• 제목/요약/키워드: efficiency of input energy

검색결과 489건 처리시간 0.019초

인버터 압축기의 저속과 고속운전범위가 계절성능에 미치는 영향 (The effect on the seasonal performance of an inverter compressor with higher and lower operating range)

  • 박윤철;하도용;민만기
    • 설비공학논문집
    • /
    • 제10권2호
    • /
    • pp.173-179
    • /
    • 1998
  • An experimental study was conducted on the effect of compressor capacity control range of heat pump on the seasonal energy efficiency ratio with variation of the maximum and minimum compressor input frequencies. To obtain seasonal energy efficiency ratio, steady state test at the maximum, minimum and intermediate compressor speed and cyclic test at the minimum compressor speed should be conducted. Maximum input frequency was varied to 95Hz, 105Hz, and 115Hz, and the minimum input frequency was varied to 35Hz, 45Hz, and 55Hz. The seasonal energy efficiency ratio increased as the input frequency of the compressor decreased. The maximum input frequency had only slight effects on the SEER.

  • PDF

온실가스 감축에 대비한 에너지 효율의 계측 (Measurement of Energy Efficiency For the Reduction of Greenhouse Gases)

  • 강상목
    • 환경정책연구
    • /
    • 제11권1호
    • /
    • pp.75-97
    • /
    • 2012
  • 본 논문의 목적은 OECD국가를 중심으로 온실가스 감축에 대비하여 에너지 원단위(原單位) 측정의 다른 방법으로서 에너지효율함수와 원단위의 효율함수의 추정을 통하여 에너지효율을 측정하는 것이다. 실증결과는 기존의 전통적 에너지원단위와 확률변경함수에 의한 에너지 효율이 크게 연관되어 있지 않았음을 보여준다. 에너지효율 함수와 원단위 효율함수의 효율도 다소 상이하였다. 에너지 투입효율함수에 의한 에너지효율은 GDP, 자본스톡, 노동, 에너지투입량의 순서로 민감하게 반응하는 것으로 보인다. 향후 투입요소 간 최적 결합을 통한 에너지 절감이 필요하고 에너지 소비가 작은 제품의 생산을 통한 저탄소 경제성장의 추구가 요구된다

  • PDF

An Input-Powered High-Efficiency Interface Circuit with Zero Standby Power in Energy Harvesting Systems

  • Li, Yani;Zhu, Zhangming;Yang, Yintang;Zhang, Chaolin
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1131-1138
    • /
    • 2015
  • This study presents an input-powered high-efficiency interface circuit for energy harvesting systems, and introduces a zero standby power design to reduce power consumption significantly while removing the external power supply. This interface circuit is composed of two stages. The first stage voltage doubler uses a positive feedback control loop to improve considerably the conversion speed and efficiency, and boost the output voltage. The second stage active diode adopts a common-grid operational amplifier (op-amp) to remove the influence of offset voltage in the traditional comparator, which eliminates leakage current and broadens bandwidth with low power consumption. The system supplies itself with the harvested energy, which enables it to enter the zero standby mode near the zero crossing points of the input current. Thereafter, high system efficiency and stability are achieved, which saves power consumption. The validity and feasibility of this design is verified by the simulation results based on the 65 nm CMOS process. The minimum input voltage is down to 0.3 V, the maximum voltage efficiency is 99.6% with a DC output current of 75.6 μA, the maximum power efficiency is 98.2% with a DC output current of 40.4 μA, and the maximum output power is 60.48 μW. The power loss of the entire interface circuit is only 18.65 μW, among which, the op-amp consumes only 2.65 μW.

에너지 효율적인 인간 크기 4족 보행 로봇의 설계와 검증 (Design Principles and Validation of a Human-sized Quadruped Robot Leg for High Energy Efficiency)

  • 염호연;;배준범
    • 로봇학회논문지
    • /
    • 제13권2호
    • /
    • pp.86-91
    • /
    • 2018
  • This paper presents about design efforts of a human-sized quadruped robot leg for high energy efficiency, and verifications. One of the representative index of the energy efficiency is the Cost of Transport (COT), but increased in the energy or work done is not calculated in COT. In this reason, the input to the output energy efficiency should be also considered as a very important term. By designing the robot with customized motor housing, small rotational inertia, and low gear ratio to reduce friction, high energy efficiency was achieved. Squatting motion of one leg was performed and simulation results were compared to the experimental results for validation. The developed 50 kg robot can lift the weight up to 200 kg, and during squatting, it showed high energy efficiency. The robot showed 71% input to output energy efficiency in positive work. Peak current during squatting only appears to be 0.3 A.

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • 제9권4호
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

AFA(All-Flash Array) 탑재 서버의 에너지 효율성에 대한 연구 (A Study on Energy Efficiency in Servers Adopting AFA(All-Flash Array))

  • 김영만;한재일
    • 한국IT서비스학회지
    • /
    • 제18권1호
    • /
    • pp.79-90
    • /
    • 2019
  • Maximizing energy efficiency minimizes the energy consumption of computation, storage and communications required for IT services, resulting in economic and environmental benefits. Recent advancement of flash and next generation non-volatile memory technology and price decrease of those memories have led to the rise of so-called AFA (All-Flash Array) storage devices made of flash or next generation non-volatile memory. Currently, the AFA devices are rapidly replacing traditional storages in the high-performance servers due to their fast input/output characteristics. However, it is not well known how effective the energy efficiency of the AFA devices in the real world. This paper shows input/output performance and power consumption of the AFA devices measured on the Linux XFS file system via experiments and discusses energy efficiency of the AFA devices in the real world.

Wireless Energy Transmission High-Efficiency DC-AC Converter Using High-Gain High-Efficiency Two-Stage Class-E Power Amplifier

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • 제11권3호
    • /
    • pp.161-165
    • /
    • 2011
  • In this paper, a high-efficiency DC-AC converter is used for wireless energy transmission. The DC-AC convertter is implemented by combining the oscillator and power amplifier. Given that the conversion efficiency of a DC-AC converter is strongly affected by the efficiency of the power amplifier, a high-efficiency power amplifier is implemented using a class-E amplifier structure. Also, because of the low output power of the oscillator connected to the input stage of the power amplifier, a high-gain two-stage power amplifier using a drive amplifier is used to realize a high-output power DC-AC converter. The high-efficiency DC-AC converter is realized by connecting the oscillator to the input stage of the high-gain high-efficiency two-stage class-E power amplifier. The output power and the conversion efficiency of the DC-AC converter are 40.83 dBm and 87.32 %, respectively, at an operation frequency of 13.56 MHz.

기질 농도에 따른 미생물전기분해전지의 운전 특성 (Effect of substrate concentration on the operating characteristics of microbial electrolysis cells)

  • 서휘진;김재일;기서진;안용태
    • 유기물자원화
    • /
    • 제31권4호
    • /
    • pp.41-49
    • /
    • 2023
  • 본 연구는 주입 기질 농도에 따른 미생물전기분해전지 (Microbial electrolysis cell, MEC)의 운전성능을 조사하였다. 주입 기질 농도에 따른 MEC의 운전 성능을 비교하기 위해 6 개의 실험실 규모 MEC를 2, 4, 6 g/L Sodium acetate 조건으로 순서대로 주입 농도를 증가시켜 운전하였다. 전류밀도, 수소 생산량, SCOD 제거율을 분석하였고, 에너지 효율, cathodic hydrogen recovery를 계산하여 주입 기질 농도 별 MEC의 운전성능을 비교하였다. 체적 전류밀도는 4 g/L 조건에서 76.3 A/m3였고, 6 g/L로 주입 농도를 증가시켰을 때 19.0 A/m3로 4 g/L 주입 조건에 비해 75% 감소하였다. 수소 생산량은 4 g/L 주입 조건이 47.3 ± 16.8 mL로 가장 높았으나 수소 수율은 2 g/L 주입 조건이 1.1 L H2/g CODin로 가장 높았다. 에너지 효율 역시 2 g/L 조건에서 가장 높았고, 6 g/L 조건에서 가장 낮은 결과를 보여주었다. 최대 전기에너지 효율은 76.4%였으며, 2 g/L 조건에서 최대 전체에너지 효율은 39.7%였다. 그러나 기질 농도가 6 g/L로 증가하였을 때, 성능이 급격히 감소하였다. Cathodic hydrogen recovery 역시 에너지 효율과 유사한 경향을 보였으며, 가장 낮은 농도 조건에서 가장 높은 성능을 보여주었다. 따라서 MEC 운전에 있어서 SCOD 제거율뿐만 아니라 에너지 효율 등을 고려한 최적 운전을 위해서는 낮은 주입 농도 조건에서 운전하는 것이 바람직할 것으로 판단된다.

압전소자 응용분야의 최적효율 운전연구 (A Study of Optimal Driving Method for Piezoelectric Device Applications)

  • 김용욱;김동희
    • 전기학회논문지
    • /
    • 제66권10호
    • /
    • pp.1540-1546
    • /
    • 2017
  • In piezoelectric device applications, it is important to improve a system efficiency because of the low generated power. In this paper, an optimal driving method is proposed to improve a system efficiency for a piezoelectric energy harvesting system. The proposed method considers disappear energy in input capacitors and the converter efficiency according to the input voltage magnitude to minimize energy losses. Experimental results based on various energy generation cases verify that the proposed method significantly improves the system efficiency; the efficiency is approximately 9.97% higher than that of the conventional method.

Impact of energy efficiency improvement on greenhouse gas in off-season tomato farming: Evidence from Punjab, Pakistan

  • Ali, Qamar;Khan, Muhammad T.I.;Khan, Muhammad N.I.
    • Advances in Energy Research
    • /
    • 제5권3호
    • /
    • pp.207-217
    • /
    • 2017
  • Energy consumption in agriculture is responsible for greenhouse gas emission but it can be reduced after efficient utilization of energy inputs. Therefore, the present study aims for the estimation of energy efficiency and extent of greenhouse gas reduction after benchmarking of inefficient farms in off-season tomato in Punjab province of Pakistan. Primary data were collected from 70 farmers with simple random sampling. By using data envelopment analysis, the average value of technical, pure technical and scale efficiency was 0.80, 0.92 and 0.87, respectively while increasing, constant and decreasing return to scale was observed in 33, 26 and 11 farmers, respectively. Total input energy was reduced by $12,688.91MJ\;ha^{-1}$ (13.89%) if inefficient farms used the energy inputs according to recommendations or benchmarking. A major portion of energy saving comes from fertilizers (68.79%) followed by diesel (15.70%), chemicals (5.91%), machinery (4.37%) and water (4.00%). Total greenhouse gases reduction was $499.17kg\;CO_2\;eq.ha^{-1}$ (14.57%) as a result of improvement in energy efficiency or benchmarking of inefficient farms. Agricultural extension staff should visit the vegetable farms on regular basis and give necessary information about efficient utilization of energy inputs. The government should create awareness about the optimum use of input through seminars and pamphlets.