• 제목/요약/키워드: effectors

검색결과 163건 처리시간 0.028초

Interferon Signal Transduction of Biphenyl Dimethyl Dicarboxylate/Amantadine and Anti-HBV Activity in HepG2 2.2.15

  • Joo Seong-Soo;Won Tae-Joon;Kim Min-Jung;Hwang Kwang-Woo;Lee Do-Ik
    • Archives of Pharmacal Research
    • /
    • 제29권5호
    • /
    • pp.405-411
    • /
    • 2006
  • Biphenyl dimethyl dicarboxylate (DDB) is a hepatoprotectant, which is used as an adjuvant agent in a treatment for chronic hepatitis. Amantadine is an antiviral agent, which is utilized primarily in the treatment of influenza, but also, occasionally in the treatment of hepatitis C. In a previous study, we reported that DDB, coupled with amantadine, would exert an anti-HBV effect, via the induction of interferon-inducible gene expression in the HepG2 2.2.15 cell line. The primary objective of the present study was to determine whether or not DDB and/or amantadine exhibit anti-HBV properties, and what mechanisms of action might be involved in such properties. In our study, we were able to determine that DDB stimulates Jak/Stat signaling, and induces the expression of interferon alpha $(IFN-\alpha)$ stimulated genes, most notably 6-16 and ISG12. In addition, the antiviral effectors induced by $IFN-\alpha$, PKR, OAS, and MxA, were regulated in the presence of DDB at its optimal concentration $(250{\mu}g/mL)$, to a degree commensurate with the degree of induction associated with the $IFN-\alpha$ treated group. Finally, we determined that the replication of pregenomic RNA and HBeAg was inhibited by DDB treatment, and this inhibition was maximized when coupled with the administration of amantadine $(25{\mu}g/mL)$. In conclusion, the results of this study demonstrated clearly that DDB, as well as the combination of DDB/amantadine, directly inhibited $IFN-\alpha$ signaling-mediated replication of HBV in infected hepatocytes, and thus may represent a novel treatment for chronic hepatitis B, which would be characterized principally by its improved safety over other treatment strategies.

B형 간염 바이러스 X 단백질과 C형 간염 바이러스의 코어 단백질에 의한 cisplatin-매개성 세포 예정사의 협조적 촉진 (Cooperative stimulation of cisplatin-mediated apoptosis by hepatitis B virus X Protein and hepatitis C virus core Protein)

  • 권현진;장경립
    • 생명과학회지
    • /
    • 제17권6호통권86호
    • /
    • pp.766-771
    • /
    • 2007
  • B형 간염 바이러스(HBV)와 C형 간염 바이러스(HCV)에 함께 감염되면 단독 감염의 경우보다 더 심각한 간질환이 유발되고 간암으로의 발전 가능성도 높아진다. 본 연구에서는 HBV의 X단백질(HBx)과 HCV의 코어 단백질이 인간 간암세포주인 HepG2세포에서 p53의 양을 협조적으로 증가시킨다는 것을 보여 주었다. 이로 인하여 세포예정사를 촉진하는 Bax 단백질의 발현이 더 증가하는 반면에 세포예정사를 억제하는 Bcl2의 발현은 더 억제됨이 관찰되었다. 그러나 이러한 효과들은 p53-음성인 Hep3B 세포에서는 관찰되지 않았다. 나아가 HBx와 코어 단백질은 HepG2의 cisplatin-매개성 세포예정사를 협조적으로 증가시키는 반면에 Hep3B에서는 이러한 효과가 나타나지 않았다. 이러한 연구 결과들은 HBV와 HCV가 동시에 감염되었을 경우에 나타나는 임상적인 소견을 이해하고 세포예정사에 미치는 HBx와 코어 단백질의 영향에 대한 기존의 상충적인 연구결과들을 해석하는데 도움을 줄 수 있다.

Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1

  • Feng, Mingxiao;Kim, Jae-Yean
    • Molecules and Cells
    • /
    • 제38권10호
    • /
    • pp.829-835
    • /
    • 2015
  • It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) ($SCF^{TIR1/AFB}$) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional $SCF^{TIR1/AFB}$ auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.

Quercetin Down-regulates IL-6/STAT-3 Signals to Induce Mitochondrial-mediated Apoptosis in a Non-small-cell Lung-cancer Cell Line, A549

  • Mukherjee, Avinaba;Khuda-Bukhsh, Anisur Rahman
    • 대한약침학회지
    • /
    • 제18권1호
    • /
    • pp.19-26
    • /
    • 2015
  • Objectives: Quercetin, a flavonoid compound, has been reported to induce apoptosis in cancer cells, but its anti-inflammatory effects, which are also closely linked with apoptosis, if any, on non-small-cell lung cancer (NSCLC) have not so far been critically examined. In this study, we tried to determine if quercetin had any demonstrable anti-inflammatory potential, which also could significantly contribute to inducing apoptosis in a NSCLC cell line, A549. Methods: In this context, several assays, including cytotoxicity, flow cytometry and fluorimetry, were done. Gene expression was analyzed by using a western blot analysis. Results: Results revealed that quercetin could induce apoptosis in A549 cells through mitochondrial depolarization by causing an imbalance in B-cell lymphoma 2/Bcl2 Antagonist X (Bcl2/Bax) ratio and by down-regulating the interleukine-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling pathway. An analysis of the data revealed that quercetin could block nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) activity at early hours, which might cause a down-regulation of the IL-6 titer, and the IL-6 expression, in turn, could inhibit p-STAT3 expression. Down-regulation of both the STAT3 and the NF-${\kappa}B$ expressions might, therefore, cause down-regulation of Bcl2 activity because both are major upstream effectors of Bcl2. Alteration in Bcl2 responses might result in an imbalance in the Bcl2/Bax ratio, which could ultimately bring about mitochondria mediated apoptosis in A549 cells. Conclusion: Overall, the finding of this study indicates that a quercetin induced anti-inflammatory pathway in A549 cells appeared to make a significant contribution towards induction of apoptosis in NSCLC and, thus, may have a therapeutic use such as a strong apoptosis inducer in cancer cells.

단백질 분해가 식물의 진균 병 진전에 미치는 영향 (The Roles of Protein Degradation During Fungal-plant Interactions)

  • 안일평;박상렬;배신철
    • 한국균학회지
    • /
    • 제38권2호
    • /
    • pp.89-94
    • /
    • 2010
  • 농업경영측면에서, 또 균학적생화학적 측면에서도 식물을 침해하는 진균들의 연구는 반드시 필요하며 병 발생이나 저항성 발현 기작 구명은 기주와 기생체에 대한 연구를 동시에 진행해야 정확히 파악할 수 있다. 현재 병원균이 생산하는 분비체상과 비병원성 인자에 대한 연구는 많은 경우 세균에서 수행되고 있으며 사상균 중 조균인 Phytophthora와 진균인 Cladosporium에서만 병원균의 effector 복합체와 기주의 저항성 기제 간 관계가 같이 진행되고 있을 뿐이다. 앞에서 살펴보았듯 진균-기주 체계에서 단백질 분해가 병원성 조절 및 침입에 관여한다고 정확히 알려진 것은 단지 수종에 불과하며 그 기작도 세포자가포식과 ubiquitin 부가반응에 제한되어 있다. Post translational modification과 단백질 분해기작이 대단히 다양하고 거의 모든 진핵생물 체계에서 관찰되고 있음을 고려할 때 단백질 분해 과정은 세균 뿐 아니라 진균에서도 병원성 발현과 저항성 조절에 참여하고 있을 것으로 생각되며 이에 대한 연구가 앞으로 계속 요구될 것이라 생각된다.

L1 Cell Adhesion Molecule Promotes Migration and Invasion via JNK Activation in Extrahepatic Cholangiocarcinoma Cells with Activating KRAS Mutation

  • Kim, Haejung;Hwang, Haein;Lee, Hansoo;Hong, Hyo Jeong
    • Molecules and Cells
    • /
    • 제40권5호
    • /
    • pp.363-370
    • /
    • 2017
  • Extrahepatic cholangiocarcinoma (ECC), a malignant tumor of biliary origin, has a poor prognosis with limited treatment options. The KRAS oncogene is the most commonly mutated gene in ECC and one of the factors that predicts a poor prognosis and low survival rate. L1 cell adhesion molecule (L1CAM) is expressed in ECC cells and acts as an independent poor prognostic factor in predicting patient survival. In this study we investigate the functional significance of L1CAM in ECC cells with activating KRAS mutation. We selected an ECC cell line, EGI-1, with activating KRAS mutation, and then confirmed its expression of L1CAM by RT-PCR, western blot analysis, and flow cytometry. The suppression of L1CAM expression (using a specific lentivirus-delivered shRNA) significantly decreased the migratory and invasive properties of EGI-1 cells, without altering their proliferation or survival. Analyses of signaling effectors in L1CAM-depleted and control EGI-1 cells indicated that L1CAM suppression decreased the levels of both phosphorylated MKK4 and total MKK4, together with c-Jun N-terminal kinase (JNK) phosphorylation. Further, exposure to a JNK inhibitor (SP600125) decreased migration and invasion of EGI-1 cells. These results suggest that L1CAM promotes cellular migration and invasion via the induction of MKK4 expression, leading to JNK activation. Our study is the first to demonstrate a functional role for L1CAM in ECC carrying the activating KRAS mutation. Given that KRAS is the most commonly mutated oncogene in ECC, L1CAM may serve as an attractive therapeutic target for ECC cells with activating KRAS mutation.

지능 에이전트 구현의 인지적 접근 (Cognitive Approach for Building Intelligent Agent)

  • 태강수
    • 인터넷정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.97-105
    • /
    • 2004
  • 에이전트가 지각이나 행위의 표상을 이해할 수 없는 이유는 의미론적 자질을 문자열로 변환하는 구문론적 표상방식에 의해서 일어난다. 자율적으로 학습하는 인지 에이전트를 구현하기위해 코헨은 에이전트가 sensor와 effector를 사용하여 주위환경과 물리적으로 직접적인 상호작용을 통하여 물리적 스키마의 의미 표상을 학습하는 의미론적 방법을 제안하였다. 본 논문에서는 부정(negation)은 그러한 물리적 스키마를 인식하게 하는 메타 스키마임을 제안한다. 최근에 Graphplan은 계획 시스템의 성능을 향상하기 위하여 inconsistency를 이용하는 제어규칙을 사용하지만, 구문론적으로 접근하여서 부정의 의미 개념을 이해하지 못하고 중복표현의 문제를 야기한다. IPP는 부정 함수인 not을 도입하여 중복문제를 해결하지만 여전히 구문론적으로 접근하며 또한 시간과 공간에서 비효율적이다. 본 논문에서는 의미론적인 접근법을 도입하여 부정을 위해서 반대 개념이라는 긍정 아톰(atom)을 사용하는 것이 지능 에이전트를 구현의 효율적 기법이라고 제안하고, 이 가설을 지지하는 실험적 결과를 제시한다.

  • PDF

Role of RIN4 in Regulating PAMP-Triggered Immunity and Effector-Triggered Immunity: Current Status and Future Perspectives

  • Ray, Sujit Kumar;Macoy, Donah Mary;Kim, Woe-Yeon;Lee, Sang Yeol;Kim, Min Gab
    • Molecules and Cells
    • /
    • 제42권7호
    • /
    • pp.503-511
    • /
    • 2019
  • As sessile organisms, plants have developed sophisticated system to defend themselves against microbial attack. Since plants do not have specialized immune cells, all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. The plant innate immune system has two major branches: PAMPs (pathogen associated molecular patterns)-triggered immunity (PTI) and effector-triggered immunity (ETI). The ability to discriminate between self and non-self is a fundamental feature of living organisms, and it is a prerequisite for the activation of plant defenses specific to microbial infection. Arabidopsis cells express receptors that detect extracellular molecules or structures of the microbes, which are called collectively PAMPs and activate PTI. However, nucleotidebinding site leucine-rich repeats (NB-LRR) proteins mediated ETI is induced by direct or indirect recognition of effector molecules encoded by avr genes. In Arabidopsis, plasmamembrane localized multifunctional protein RIN4 (RPM1-interacting protein 4) plays important role in both PTI and ETI. Previous studies have suggested that RIN4 functions as a negative regulator of PTI. In addition, many different bacterial effector proteins modify RIN4 to destabilize plant immunity and several NB-LRR proteins, including RPM1 (resistance to Pseudomonas syringae pv. maculicola 1), RPS2 (resistance to P. syringae 2) guard RIN4. This review summarizes the current studies that have described signaling mechanism of RIN4 function, modification of RIN4 by bacterial effectors and different interacting partner of RIN4 in defense related pathway. In addition, the emerging role of the RIN4 in plant physiology and intercellular signaling as it presents in exosomes will be discussed.

Pi5 and Pii Paired NLRs Are Functionally Exchangeable and Confer Similar Disease Resistance Specificity

  • Vo, Kieu Thi Xuan;Lee, Sang-Kyu;Halane, Morgan K.;Song, Min-Young;Hoang, Trung Viet;Kim, Chi-Yeol;Park, Sook-Young;Jeon, Junhyun;Kim, Sun Tae;Sohn, Kee Hoon;Jeon, Jong-Seong
    • Molecules and Cells
    • /
    • 제42권9호
    • /
    • pp.637-645
    • /
    • 2019
  • Effector-triggered immunity (ETI) is an effective layer of plant defense initiated upon recognition of avirulence (Avr) effectors from pathogens by cognate plant disease resistance (R) proteins. In rice, a large number of R genes have been characterized from various cultivars and have greatly contributed to breeding programs to improve resistance against the rice blast pathogen Magnaporthe oryzae. The extreme diversity of R gene repertoires is thought to be a result of co-evolutionary history between rice and its pathogens including M. oryzae. Here we show that Pii is an allele of Pi5 by DNA sequence characterization and complementation analysis. Pii-1 and Pii-2 cDNAs were cloned by reverse transcription polymerase chain reaction from the Pii-carrying cultivar Fujisaka5. The complementation test in susceptible rice cultivar Dongjin demonstrated that the rice blast resistance mediated by Pii, similar to Pi5, requires the presence of two nucleotide-binding leucine-rich repeat genes, Pii-1 and Pii-2. Consistent with our hypothesis that Pi5 and Pii are functionally indistinguishable, the replacement of Pii-1 by Pi5-1 and Pii-2 by Pi5-2, respectively, does not change the level of disease resistance to M. oryzae carrying AVR-Pii. Surprisingly, Exo70F3, required for Pii-mediated resistance, is dispensable for Pi5-mediated resistance. Based on our results, despite similarities observed between Pi5 and Pii, we hypothesize that Pi5 and Pii pairs require partially distinct mechanisms to function.

Harnessing NK cells for cancer immunotherapy: immune checkpoint receptors and chimeric antigen receptors

  • Kim, Nayoung;Lee, Dong-Hee;Choi, Woo Seon;Yi, Eunbi;Kim, HyoJeong;Kim, Jung Min;Jin, Hyung-Seung;Kim, Hun Sik
    • BMB Reports
    • /
    • 제54권1호
    • /
    • pp.44-58
    • /
    • 2021
  • Natural killer (NK) cells, key antitumor effectors of the innate immune system, are endowed with the unique ability to spontaneously eliminate cells undergoing a neoplastic transformation. Given their broad reactivity against diverse types of cancer and close association with cancer prognosis, NK cells have gained considerable attention as a promising therapeutic target for cancer immunotherapy. NK cell-based therapies have demonstrated favorable clinical efficacies in several hematological malignancies but limited success in solid tumors, thus highlighting the need to develop new therapeutic strategies to restore and optimize anti-tumor activity while preventing tumor immune escape. The current therapeutic modalities yielding encouraging results in clinical trials include the blockade of immune checkpoint receptors to overcome the immune-evasion mechanism used by tumors and the incorporation of tumor-directed chimeric antigen receptors to enhance NK cell anti-tumor specificity and activity. These observations, together with recent advances in the understanding of NK cell activation within the tumor microenvironment, will facilitate the optimal design of NK cell-based therapy against a broad range of cancers and, more desirably, refractory cancers.