• 제목/요약/키워드: effector T cells

검색결과 131건 처리시간 0.031초

Microbial Components and Effector Molecules in T Helper Cell Differentiation and Function

  • Changhon Lee;Haena Lee;John Chulhoon Park;Sin-Hyeog Im
    • IMMUNE NETWORK
    • /
    • 제23권1호
    • /
    • pp.7.1-7.27
    • /
    • 2023
  • The mammalian intestines harbor trillions of commensal microorganisms composed of thousands of species that are collectively called gut microbiota. Among the microbiota, bacteria are the predominant microorganism, with viruses, protozoa, and fungi (mycobiota) making up a relatively smaller population. The microbial communities play fundamental roles in the maturation and orchestration of the immune landscape in health and disease. Primarily, the gut microbiota modulates the immune system to maintain homeostasis and plays a crucial role in regulating the pathogenesis and pathophysiology of inflammatory, neuronal, and metabolic disorders. The microbiota modulates the host immune system through direct interactions with immune cells or indirect mechanisms such as producing short-chain acids and diverse metabolites. Numerous researchers have put extensive efforts into investigating the role of microbes in immune regulation, discovering novel immunomodulatory microbial species, identifying key effector molecules, and demonstrating how microbes and their key effector molecules mechanistically impact the host immune system. Consequently, recent studies suggest that several microbial species and their immunomodulatory molecules have therapeutic applicability in preclinical settings of multiple disorders. Nonetheless, it is still unclear why and how a handful of microorganisms and their key molecules affect the host immunity in diverse diseases. This review mainly discusses the role of microbes and their metabolites in T helper cell differentiation, immunomodulatory function, and their modes of action.

CD4+CD25+ Regulatory T Cells Selectively Diminish Systemic Autoreactivity in Arthritic K/BxN Mice

  • Kang, Sang Mee;Jang, Eunkyeong;Paik, Doo-Jin;Jang, Young-Ju;Youn, Jeehee
    • Molecules and Cells
    • /
    • 제25권1호
    • /
    • pp.64-69
    • /
    • 2008
  • Although the arthritis symptoms observed in the K/BxN model have been shown to be dependent on the functions of T and B cells specific to the self antigen glucose-6-phosphate isomerase, less is known about the in vivo roles of $CD4^{+}CD25^{+}$ regulatory T($T_{reg}$) cells in the pathology of K/BxN mice. We determined the quantitative and functional characteristics of the $T_{reg}$ cells in K/BxN mice. These mice contained a higher percentage of $Foxp3^+\;T_{reg}$ cells among the $CD4^+$ T cells than their BxN littermates. These $T_{reg}$ cells were anergic and efficiently suppressed the proliferation of $na\ddot{i}ve$ $CD4^+$ T cells and cytokine production by effector $CD4^+$ T cells in vitro. Antibody-mediated depletion of $CD25^+$ cells caused K/BxN mice to develop multi-organ inflammation and autoantibody production, while the symptoms of arthritis were not affected. These results demonstrate that despite the inability of the $T_{reg}$ cells to suppress arthritis development, they play a critical role protecting the arthritic mice from systemic expansion of autoimmunity.

Primary 인체 전립선 암세포에서 Resveratrol의 Apoptosis 유도 효과 (Resveratrol Induces Apoptosis in Primary Human Prostate Cancer Cells)

  • 강혜인;김재용;조현동;박경욱;강점순;서권일
    • 한국식품영양과학회지
    • /
    • 제39권8호
    • /
    • pp.1119-1125
    • /
    • 2010
  • 본 연구에서는 resveratrol을 전립선 암 치료제로의 활용 가능성을 조사하기 위하여 primary 인체 전립선 암세포에 대한 resveratrol의 성장억제 효과 및 그 기전에 대하여 조사 하였다. Resveratrol은 RC-58T/h/SA#4 세포에서 농도 및 시간에 의존적으로 세포의 증식을 억제하였으며, $IC_{50}$ 값은 암세포인 RC-58T/h/SA#4, LNCaP, PC-3에서는 각각 245, 320, $340\;{\mu}M$, 전립선 정상세포인 RWPE-1에서는 $982\;{\mu}M$로 나타나 정상세포에서보다는 암세포에서 그 독성이 크게 나타났다. 또한 resveratrol에 의해 유도된 세포 사멸은 핵 응축, sub-G1 함량 증가 및 DNA 분절 현상이 나타나 apoptosis를 유도함을 알 수 있었다. Resveatrol은 caspase-8, -9 및 effector casapse-3 활성을 농도 의존적으로 증가시켰으며, caspase 저해제인 z-VAD-fmk로 caspase의 처리 시 resveratrol에 의한 apoptosis 유도 현상이 유의적으로 감소되어 resveratrol에 의한 RC-58T/h/SA#4 세포의 apoptosis 유도에 caspase가 중요한 역할을 하고 있음을 확인하였다. Resveratrol에 의해 anti-apoptotic 인자인 Bcl-2 및 Bid 단백질의 발현은 감소하였으나, pro-apoptotic 인자인 Bax 단백질 발현은 변화가 없었다. 따라서 본 연구는 resveratrol이 RC-58T/h/SA#4세포에서 caspase 의존형 미토콘드리아 경로에 의해 유도되며, resveratrol은 전립선암 치료제로서 사용 가능성을 시사한다.

만성 바이러스 감염에서 면역조절인자 FoxP3, PD-1 및 CTLA-4의 역할 (The Roles of Immune Regulatory Factors FoxP3, PD-1, and CTLA-4 in Chronic Viral Infection)

  • 조효선
    • 미생물학회지
    • /
    • 제49권3호
    • /
    • pp.221-227
    • /
    • 2013
  • 인간면역결핍바이러스(Human immunodeficiency virus; HIV), B형 간염 바이러스(Hepatitis B virus; HBV), 그리고 C형 간염 바이러스(Hepatitis C virus; HCV)는 만성 감염질환을 일으키는 대표적인 바이러스들이다. 인체내 감염시 임상적 진행경과에 따른 바이러스 특이 T림프구의 항바이러스 기능변화 및 바이러스의 체내 지속성과 T림프구에 발현되는 다양한 면역인자(e.g., CD28, CD25, FoxP3, PD-1, CTLA-4)들과의 구체적인 상관관계는 최근 많은 국내외 연구진들을 통해 연구되고 있다. 그 중 FoxP3 (forkhead box P3), PD-1 (programmed death-1) 그리고 CTLA-4 (cytotoxic T lymphocyte-associated antigen 4)는 T림프구에서 발현되는 면역조절인자로 만성 바이러스성 감염시 그 발현이 증가되는 것으로 관찰되었으며, 항바이러스 작용을 가지는 T림프구의 기능결핍과 밀접한 상관관계가 있는 것으로 알려져 있다. 본 총설에서는 만성적인 HIV, HBV, 그리고 HCV 감염에서 바이러스 특이 T림프구에서 발현되는 FoxP3, PD1, 그리고 CTLA-4의 발현변화와 각 질환의 임상적 진행경과와의 상관성, 그리고 이들 발현이 T림프구의 항바이러스 기능에 미치는 영향 등을 중심으로 기술하였다.

Effector Memory CD8+ and CD4+ T Cell Immunity Associated with Metabolic Syndrome in Obese Children

  • Yang, Da-Hee;Lee, Hyunju;Lee, Naeun;Shin, Min Sun;Kang, Insoo;Kang, Ki-Soo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제24권4호
    • /
    • pp.377-383
    • /
    • 2021
  • Purpose: We investigated the association of effector memory (EM) CD8+ T cell and CD4+ T cell immunity with metabolic syndrome (MS). Methods: Surface and intracellular staining of peripheral blood mononuclear cells was performed. Anti-interleukin-7 receptor-alpha (IL-7Rα) and CX3CR1 antibodies were used to stain the subsets of EM CD8+ T cells, while anti-interferon-gamma (IFN-γ), interleukin-17 (IL-17), and forkhead box P3 (FOXP3) antibodies were used for CD4+ T cell subsets. Results: Of the 47 obese children, 11 were female. Children with MS had significantly higher levels of serum insulin (34.8±13.8 vs. 16.4±6.3 µU/mL, p<0.001) and homeostasis model assessment of insulin resistance (8.9±4.1 vs. 3.9±1.5, p<0.001) than children without MS. Children with MS revealed significantly higher frequencies of IL-7Rαlow CD8+ T cells (60.1±19.1% vs. 48.4±11.5%, p=0.047) and IL-7RαlowCX3CR1+ CD8+ T cells (53.8±20.1% vs. 41.5±11.9%, p=0.036) than children without MS. As the serum triglyceride levels increased, the frequency of IL-7RαlowCX3CR1+ and IL-7RαhighCX3CR1- CD8+ T cells increased and decreased, respectively (r=0.335, p=0.014 and r=-0.350, p=0.010, respectively), in 47 children. However, no CD4+ T cell subset parameters were significantly different between children with and without MS. Conclusion: In obese children with MS, the changes in immunity due to changes in EM CD8+ T cells might be related to the morbidity of obesity.

Unleashing the Therapeutic Potential of CAR-T Cell Therapy Using Gene-Editing Technologies

  • Jung, In-Young;Lee, Jungmin
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.717-723
    • /
    • 2018
  • Chimeric antigen receptor (CAR) T-cell therapy, an emerging immunotherapy, has demonstrated promising clinical results in hematological malignancies including B-cell malignancies. However, accessibility to this transformative medicine is highly limited due to the complex process of manufacturing, limited options for target antigens, and insufficient anti-tumor responses against solid tumors. Advances in gene-editing technologies, such as the development of Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9), have provided novel engineering strategies to address these limitations. Development of next-generation CAR-T cells using gene-editing technologies would enhance the therapeutic potential of CAR-T cell treatment for both hematologic and solid tumors. Here we summarize the unmet medical needs of current CAR-T cell therapies and gene-editing strategies to resolve these challenges as well as safety concerns of gene-edited CAR-T therapies.

Oncolytic Vaccinia Virus Expressing 4-1BBL Inhibits Tumor Growth by Increasing CD8+ T Cells in B16F10 Tumor Model

  • Lee, Na-Kyung;Kim, Hong-Sung
    • 대한의생명과학회지
    • /
    • 제18권3호
    • /
    • pp.210-217
    • /
    • 2012
  • Oncolytic viral vectors have shown good candidates for cancer treatment but have many limitations. To improve the therapeutic potential of oncolytic vaccinia virus, we developed a recombinant vaccinia virus expressing the 4-1BBL co-stimulatory molecule or CCL21. 4-1BBL and CCL21 expression was identified by FACS analysis and immunoblotting. rV-4-1BBL vaccination shows significant tumor regression compared to rV-LacZ, but rV-CCL21 shows rapid tumor growth compared to rV-LacZ in the poorly immunogenic B16 murine melanoma model. 4-1BBL expression resulted in the increase of the number of CD8+ T cells and especially the increase of effector (CD62L-CD44+) CD8+ T cells. These data suggest 4-1BBL may be the potential target for enhancement of tumor immunotherapy.

Tumor-derived CD4+CD25+ Tregs Inhibit the Maturation and Antigen-Presenting Function of Dendritic Cells

  • Du, Yong;Chen, Xin;Lin, Xiu-Qing;Wu, Wei;Huang, Zhi-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2665-2669
    • /
    • 2015
  • CD4+CD25+regulatory T cells (Tregs) play a key role in regulation of immnue response and maintenance of self-tolerance. Studies have found Tregs could suppress tumor-specific T cell-mediated immune response and promote cancer progression. Depletion of Tregs can enhance antitumor immunity. Dendritic cells (DCs) are professional antigen-presenting cells and capable of activating antigen-specific immune responses, which make them ideal candidate for cancer immunotherapy. Now various DC vaccines are considered as effective treatment for cancers. The aim of this study was to evaluate variation of Tregs in BALB/C mice with hepatocellular carcinoma and investigate the interaction between tumor-derived Tregs, effector T cells (Teff) and splenic DCs. We found the percentages of Tregs/CD4+ in the peripheral blood of tumor-bearing mice were higher than in normal mice. Tumor-derived Tregs diminished the up-regulation of costimulatory molecule expression on splenic DCs, even in the presence of Teff cells and simultaneously inhibited IL-12 and $TNF-{\alpha}$ secretion by DCs.

노랑하늘타리 추출물의 HL-60 혈액종양세포 Apoptosis 유도 효과 (Induction of Apoptosis by Extracts of Trichosanthes kirilpwii var. japonica in HL-60 Leukemia Cells)

  • 김상철;박수영;현재희;이영기;박덕배;강사윤;유은숙;강희경
    • 약학회지
    • /
    • 제47권5호
    • /
    • pp.319-324
    • /
    • 2003
  • This study examined the inhibitory effect of extracts of Trichosanthes kirilpwii sorted according to the parts on the growth of HL-60 cells. The growth of HL-60 leukemia cells was markedly inhibited by the treatment of the 80% methanol extract of roots (10 $\mu\textrm{g}$/mι), stems (50$\mu\textrm{g}$/mι), pips (10$\mu\textrm{g}$/mι), and gourds (100 $\mu\textrm{g}$/mι), or the ethylacetate fraction of leaves (100 $\mu\textrm{g}$/mι). when the HL-60 cells were treated with the extracts of T. kirilpwii sorted according to the parts, DNA fragmentation and sub-G1 hypodiploid cells were observed. Moreover, T. kirilpwii extracts increased the level of the expression of the active form of caspase-3 and the activation of caspase-3 was demonstrated by the cleavage of poly(ADP-ribose) polymerase, a vital substrate of effector caspase. The results suggest that the inhibitory effect of extracts of T. kirilpwii sorted according to the parts on the growth of HL-60 cells seems to arise from the induction of apoptosis.

Homologous Expression and Quantitative Analysis of T3SS-Dependent Secretion of TAP-Tagged XoAvrBs2 in Xanthomonas oryzae pv. oryzae Induced by Rice Leaf Extract

  • Kim, S.H.;Lee, S.E.;Hong, M.K.;Song, N.H.;Yoon, B.;Viet, P.T.;Ahn, Y.J.;Lee, B.M.;Jung, J.W.;Kim, K.P.;Han, Y.S.;Kim, J.G.;Kang, L.W.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권7호
    • /
    • pp.679-685
    • /
    • 2011
  • Xanthomonas oryzae pv. oryzae (Xoo) produces a putative effector, XoAvrBs2. We expressed XoAvrBs2 homologously in Xoo with a TAP-tag at the C-terminus to enable quantitative analysis of protein expression and secretion. Addition of rice leaf extracts from both Xoo-sensitive and Xoo-resistant rice cultivars to the Xoo cells induced expression of the XoAvrBs2 gene at the transcriptional and translational levels, and also stimulated a remarkable amount of XoAvrBs2 secretion into the medium. In a T3SS-defective Xoo mutant strain, secretion of the TAPtagged XoAvrBs2 was blocked. Thus, we elucidated the transcriptional and translational expressions of the XoAvrBs2 gene in Xoo was induced in vitro by the interaction with rice and the induced secretion of XoAvrBs2 was T3SSdependent. It is the first report to measure the homologous expression and secretion of XoAvrBs2 in vitro by rice leaf extract. Our system for the quantitative analysis of effector protein expression and secretion could be generally used for the study of host-pathogen interactions.