• Title/Summary/Keyword: effective wind speed

Search Result 185, Processing Time 0.03 seconds

Accurate Wind Speed Prediction Using Effective Markov Transition Matrix and Comparison with Other MCP Models (Effective markov transition matrix를 이용한 풍속예측 및 MCP 모델과 비교)

  • Kang, Minsang;Son, Eunkuk;Lee, Jinjae;Kang, Seungjin
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • This paper presents an effective Markov transition matrix (EMTM), which will be used to calculate the wind speed at the target site in a wind farm to accurately predict wind energy production. The existing MTS prediction method using a Markov transition matrix (MTM) exhibits a limitation where significant prediction variations are observed owing to random selection errors and its bin width. The proposed method selects the effective states of the MTM and refines its bin width to reduce the error of random selection during a gap filling procedure in MTS. The EMTM reduces the level of variation in the repeated prediction of wind speed by using the coefficient of variations and range of variations. In a case study, MTS exhibited better performance than other MCP models when EMTM was applied to estimate a one-day wind speed, by using mean relative and root mean square errors.

An integrator based wind speed estimator for wind turbine control

  • Elmaati, Younes Ait;El Bahir, Lhoussain;Faitah, Khalid
    • Wind and Structures
    • /
    • v.21 no.4
    • /
    • pp.443-460
    • /
    • 2015
  • In this paper, an integrator based method to estimate the effective wind speed in wind turbine systems is proposed. First, the aerodynamic torque was accurately estimated through a proportional gain based observer where the generator speed is the measured output of the system. The torque signal contains not only useful frequencies of the wind, but also high frequencies and the ones due to structural vibration. The useful information of the wind signal is low frequency. A spectral analysis permitted the determination of the useful frequencies. The high frequencies were then filtered before introducing the torque signal in the wind speed observer. The desired effective wind speed was extracted through an integrator based observer using the previously estimated aerodynamic torque. The strength of the method is to avoid numerical solutions used in literature of the wind speed estimation. The effectiveness of the proposed wind speed estimator and its use to control the generator speed has been tested under turbulent situations using the FAST software (Fatigue, Aerodynamics, Structures, and Turbulence), for large scale Megawatt turbine.

Development of Wind Speed Estimator for Wind Turbine Generation System (풍력발전 시스템을 위한 풍속 추정기 개발)

  • Kim, Byung-Moon;Kim, Sung-Ho;Song, Hwa-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.710-715
    • /
    • 2010
  • As wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is how to efficiently operate the wind turbines in a wide range of wind speeds. The wind speed has a huge impact on the dynamic response of wind turbine. For this purpose, many control algorithms are in need for a method to measure wind speed to increase performance. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper, a new method based on Kalman filter and artificial neural network is presented for the estimation of the effective wind speed. To verify the performance of the proposed scheme, some simulation studies are carried out.

Design of Speed Controller for Stall Blade Wind Turbine Complying with the Speed Limit During Speed Overshoot (속도 오버슈트 발생 시 제한 속도를 초과하지 않는 실속형 블레이드 풍력터빈의 속도제어기 설계)

  • Kim, Ye-Chan;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.438-445
    • /
    • 2022
  • Blade efficiency decreases when the rotor speed is kept constant even though the wind speed is higher than the rated value. Therefore, a speed controller is used to regulate the rotor speed in the high-wind-speed region. In stall-blade wind turbine, the role of the speed controller is important because precise aerodynamic regulation is unavailable. In this study, an effective parameter design method of a PI speed controller is proposed to limit the speed overshoot of a type 4 wind turbine with stall blades even though wind gust occurs. The proposed method considers the efficiency characteristics of the stall blade and the mechanical inertia of the wind turbine rotor. It determines the bandwidth of the speed controller to comply with the speed limit during generator speed overshoot for the worst case of wind gust. The proposed method is verified through intensive simulations with a MATLAB/SIMULINK model and experimental results obtained using a 3 kW MG set of wind turbine simulator.

Characteristics of Efficient Radius of Meteorological Observation Data to Estimate Regional Wind Energy (국지규모 풍력에너지 평가를 위한 기상 관측 자료의 영향 반경 특성)

  • Lee, Soon-Hwan;Kim, Min-Jung;Lee, Hwa-Woon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.585-595
    • /
    • 2007
  • Representative impacts and effectiveness of surface meteorological observation data assimilation were examined in order to use wind resources estimation around southern coastal area of the Korean Peninsula. The data used in study are observational wind and temperature data at 5 and 41 sites of Regional Meteorological Offices and Automatical Weather Systems, respectively. Observation wind speed data tends to show small effective radius with limited area. Especially assimilation impacts of data observed at peninsula type sites like Yeosu play only around the inside of the peninsula. This limited effective radius for wind speed is caused by the strong correlation between topography and wind speed. And the efficient radius for surface air temperature is larger than that of wind. Data assimilation for observational air temperature is useful to increase the accuracy of wind energy estimation. However assimilation of wind data requires special care in its application due to high sensitivity of topographical complexity.

Analysis of Structures for Improving Pedestrian Wind Environment in Urban Areas (도시지역의 보행자 풍환경 개선을 위한 구조물 분석)

  • Park, Ha-Jun;Woo, Yun-Hee;Yoo, Moo-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.231-232
    • /
    • 2023
  • With taller buildings and larger typhoons, the impact of building winds is growing. During the 11th Typhoon Hinnamno in 2022, the building wind in Busan L City exceeded 60m/s, reaching the highest speed ever. Although many studies have been conducted on reducing the wind load of buildings, which is one of the problem factors caused by strong wind speed, there is a lack of research on wind speed reducing sculptures that can directly control strong wind speed. In this paper, several types of wind speed reduction sculptures were proposed to solve these problems, and the wind speed reduction capability of the proposed sculptures was analyzed through computational fluid dynamics (CFD). These results can contribute to suggesting effective design methods for improving the urban environment and reducing pedestrian stress.

  • PDF

Effectiveness of strake installation for traffic signal structure fatigue mitigation

  • Wieghaus, Kyle T.;Hurlebaus, Stefan;Mander, John B.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.393-409
    • /
    • 2014
  • Across-wind response is often the cause of significant structural vibrations that in turn cause fatigue damage to welded and other connections. The efficacy of low-cost helical strakes to mitigate such adverse response is presented for a traffic signal structure. Field observations are made on a prototype structure in a natural wind environment without and with helical strakes installed on the cantilevered arm. Through continuous monitoring, the strakes were found to be effective in reducing across-wind response at wind speeds less than 10 m/s. Estimates of fatigue life are made for four different geographical locations and wind environments. Results for the class of traffic signal structure show that helical arm strakes are most effective in locations with benign wind environments where the average annual wind speed is not more than the vortex shedding wind speed, which for this investigation is 5 m/s. It is concluded that while strakes may be effective, it is not the panacea to mitigating connection fatigue at all locations.

Design of an Adaptive Backstepping Speed Controller for the Wind Power Generation System (풍력발전시스템의 적응백스테핑 속도제어기 설계)

  • Hyun, Keun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.211-216
    • /
    • 2005
  • In this paper a robust controller using adaptive backstepping technique is proposed to control the speed of wind power generation system. To make wind power generation truly cost effective and reliable, advanced and robust control algorithms are derived to on-line adjust the excitation winding voltage of the generator based on both mechanical and electrical dynamics. This method is shown to be able to achieve smooth and asymptotic rotor speed tracking, as justified by analysis and computer simulation.

The Influence of Optical Porosity of Tree Windbreaks on Windward Wind Speed, Erosive Force and Sand Deposition

  • Dafa-Alla, M.D.;Al-Amin, Nawal K.N.
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.212-218
    • /
    • 2016
  • The research was conducted windward of an irrigated Acacia amplicips Maslin windbreak established to protect As Salam Cement Plant from winds and moving sands. Two belts with approximate optical porosities of 50% and 20% were studied in River Nile State, Sudan. The research aimed at assessing the efficiency of the two belts in wind speed reduction and sand deposition. Research methods included: (i) estimation of optical porosity, (ii) measurements of windward wind speeds at a control and at distances of 0.5 h (h stands for windbreak height), 1 h and 2 h at two vertical levels of 0.25 h and 0.5 h, (iii) estimation of relative wind speeds at the three positions (distance and height) at windward and (iv) estimation of wind erosive forces and prediction of zones of sand deposition. Results show that while the two belts reduced windward wind speeds at the two levels for the three distances, belt II was more effective. Nearest sand deposition occurred at 2 h and 1h windward of belt II and belt I, respectively, at level 0.25 h. At level 0.5 h, sand was deposited only at 2 h windward of belt II and no sand deposition occurred windward of belt I. The study concludes that less porous windbreaks are more effective in reducing wind speed and in depositing sand in windward direction at a distance of not less than twice the belt height.

Development of a Quality Check Algorithm for the WISE Pulsed Doppler Wind Lidar (WISE 펄스 도플러 윈드라이다 품질관리 알고리즘 개발)

  • Park, Moon-Soo;Choi, Min-Hyeok
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.461-471
    • /
    • 2016
  • A quality check algorithm for the Weather Information Service Engine pulsed Doppler wind lidar is developed from a view point of spatial and temporal consistencies of observed wind speed. Threshold values for quality check are determined by statistical analysis on the standard deviation of 3-component of wind speed obtained by a wind lidar, and the vertical gradient of horizontal wind speed obtained by a radiosonde system. The algorithm includes carrier-to-noise ratio (CNR) check, data availability check, and vertical gradient of horizontal wind speed check. That is, data sets whose CNR is less than -29 dB, data availability is less than 90%, or vertical gradient of horizontal wind speed is less than $-0.028s^{-1}$ or larger than $0.032s^{-1}$ are classified as 'doubtful', and flagged. The developed quality check algorithm is applied to data obtained at Bucheon station for the period from 1 to 30 September 2015. It is found that the number of 'doubtful' data shows maxima around 2000 m high, but the ratio of 'doubtful' to height-total data increases with increasing height due to atmospheric boundary height, cloud, or rainfall, etc. It is also found that the quality check by data availability is more effective than those by carrier to noise ratio or vertical gradient of horizontal wind speed to remove an erroneous noise data.