• Title/Summary/Keyword: effective stress model

Search Result 764, Processing Time 0.026 seconds

Fatigue Crack Growth Rate Equation by Crack Closure (균열닫힘현상을 고려한 피로균열전파식)

  • 김용수;강동명;신근하
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.81-87
    • /
    • 1991
  • We propose the crack growth rate equation which will model fatigue crack growth rate behavior such that constant stress amplitude fatigue crack growth behavior can be predicted. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.2, R=0.4 and R=0.6. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. Through constant stress amplitude fatigue test by using unloading elastic compliance method, it is confirmed that crack closure is a close relationship with fatigue crack propagation. We describe simply fatigue crack propagation behavior as a function of the effective stress intensity factor range ($\Delta$ $K_{eff}$=U .$\Delta$K) for all three regions (threshold region, stable region). The fatigue crack growth rate equation is given by da / dN=A($\Delta$ $K_{eff}$­$\Delta$ $K_{o}$ )$^{m}$ / ($\Delta$ $K_{eff}$­$\Delta$K) Where, A and m are material constants, and $\Delta$ $K_{o}$ is stress intensity factor range at low $\Delta$K region. $K_{cf}$ is critical fatigue stress intensity factor.actor.

  • PDF

Actor and Partner Effects of Couple's Daily Stress and Dyadic Coping on Marital Satisfaction (부부의 일상 스트레스와 공동대처가 결혼만족에 미치는 자기 효과와 상대방 효과)

  • Won, Su Kyung;Seol, Kyoung Ok
    • Journal of Korean Academy of Nursing
    • /
    • v.50 no.6
    • /
    • pp.813-821
    • /
    • 2020
  • Purpose: This study aimed to identify the actor and partner effects of daily stress and dyadic coping on marital satisfaction using the Actor-Partner Interdependence Mediational Model (APIeM). Methods: Participants were 314 couples who met the study's eligibility criteria. Data were collected from March to April 2016 through apartment and cooperative company communities in Seoul. Two APIeMs of positive and negative dyadic coping were analyzed using SPSS 20.0 and Mplus 7.4. All measures were self-administered. Results: Daily stress and positive and negative dyadic coping in both spouses had direct actor effects on their marital satisfaction. Daily stress in both spouses had an indirect actor effect on marital satisfaction through their positive and negative dyadic coping. The husband's daily stress had an indirect partner effect on the wife's marital satisfaction through his positive dyadic coping, while the wife's positive dyadic coping had a direct partner effect on the husband's marital satisfaction. The husband's daily stress had an indirect partner effect on the wife's marital satisfaction through his negative dyadic coping, while the wife's negative dyadic coping had a direct partner effect on the husband's marital satisfaction. Conclusion: Dyadic coping is an effective way to deal with couple's daily hassles as it increase their satisfaction in marriage.

The Seismic Performance of Rockfill Dam with Elasto-Plastic Constitutive Model (탄-소성 구성모델을 이용한 사력댐의 동적거동특성)

  • 이종욱;임정열;오병현;임희대
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.91-97
    • /
    • 2002
  • Total stress analysis method and nonlinear constitutive models have been used to analyze a dynamic performance of Dams but, there is some limitation in analysis, for example, effects of build up of pore pressure and generations of permanent deformations. Therefore considering these limitations, which is mentioned before, dynamic behavior characteristics of dams and response acceleration characteristics was analyzed in time domain, applying an elasto-plastic constitutive model and effective analysis method.

  • PDF

Study on the stress distribution depending on the bone type and implant abutment connection by finite element analysis (지대주 연결 형태와 골질에 따른 저작압이 임프란트 주위골내 응력분포에 미치는 영향)

  • Park, Hyun-Soo;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.531-554
    • /
    • 2006
  • Oral implants must fulfill certain criteria arising from special demands of function, which include biocompatibility, adequate mechanical strength, optimum soft and hard tissue integration, and transmission of functional forces to bone within physiological limits. And one of the critical elements influencing the long-term uncompromise functioning of oral implants is load distribution at the implant- bone interface, Factors that affect the load transfer at the bone-implant interface include the type of loading, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface. To understand the biomechanical behavior of dental implants, validation of stress and strain measurements is required. The finite element analysis (FEA) has been applied to the dental implant field to predict stress distribution patterns in the implant-bone interface by comparison of various implant designs. This method offers the advantage of solving complex structural problems by dividing them into smaller and simpler interrelated sections by using mathematical techniques. The purpose of this study was to evaluate the stresses induced around the implants in bone using FEA, A 3D FEA computer software (SOLIDWORKS 2004, DASSO SYSTEM, France) was used for the analysis of clinical simulations. Two types (external and internal) of implants of 4.1 mm diameter, 12.0 mm length were buried in 4 types of bone modeled. Vertical and oblique forces of lOON were applied on the center of the abutment, and the values of von Mises equivalent stress at the implant-bone interface were computed. The results showed that von Mises stresses at the marginal. bone were higher under oblique load than under vertical load, and the stresses were higher at the lingual marginal bone than at the buccal marginal bone under oblique load. Under vertical and oblique load, the stress in type I, II, III bone was found to be the highest at the marginal bone and the lowest at the bone around apical portions of implant. Higher stresses occurred at the top of the crestal region and lower stresses occurred near the tip of the implant with greater thickness of the cortical shell while high stresses surrounded the fixture apex for type N. The stresses in the crestal region were higher in Model 2 than in Model 1, the stresses near the tip of the implant were higher in Model 1 than Model 2, and Model 2 showed more effective stress distribution than Model.

Finite element analysis of stress distribution on supporting bone of cement retained implant by loading location (하중 위치에 따른 시멘트 유지형 임플란트 지지골의 유한요소법 응력 분석)

  • Kim, Kap-Jin
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.143-149
    • /
    • 2016
  • Purpose: The purpose of this study is to evaluate the effect of two different oblique mechanical loading to occlusal surfaces of cement retained implant on the stress distributions in surrounding bone, using 3-dimensional finite element method. Methods: A 3-dimensional finite element model of a cement retained implant composed of three unit implants, simplified ceramic crown and supporting bone was developed according to the design of ement retained implant for this study. two kinds of surface distributed oblique loads(100 N) are applied to following occlusal surfaces in the single crowns; 1) oblique load on 2 occlusal points(50N for each buccal cusp, 2 buccal cusps exist), 2) oblique load on 4 occlusal points(25N for each buccal and lingual cusp, 2 buccal and 2 lingual cusps exist) Results: The results of the comparison of the stress distributions on surrounding bone are as follows. In the condition of oblique load on 2 occlusal points, VMS was 741.3 Mpa in the M1(Ø$4.0{\times}13mm$) model and 251.2 Mpa in the M2(Ø$5.0{\times}13mm$) model. It means the stress on the supporting bone is decreased. The results of oblique load on 4 occlusal points are similar to this one. Conclusion: Increasing the diameter of the implant fixture is helpful to distribute the stress on the supporting bone. Also, to obtain the structural stability of the supporting bone, it is effective to distribute the load evenly on the occlusal surface of crown in producing single crown implant.

Effect of homogenization models on stress analysis of functionally graded plates

  • Yahia, Sihame Ait;Amar, Lemya Hanifi Hachemi;Belabed, Zakaria;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.527-544
    • /
    • 2018
  • In this paper, the effect of homogenization models on stress analysis is presented for functionally graded plates (FGMs). The derivation of the effective elastic proprieties of the FGMs, which are a combination of both ceramic and metallic phase materials, is of most of importance. The majority of studies in the last decade, the Voigt homogenization model explored to derive the effective elastic proprieties of FGMs at macroscopic-scale in order to study their mechanical responses. In this work, various homogenization models were used to derive the effective elastic proprieties of FGMs. The effect of these models on the stress analysis have also been presented and discussed through a comparative study. So as to show this effect, a refined plate theory is formulated and evaluated, the number of unknowns and governing equations were reduced by dividing the transverse displacement into both bending and shear parts. Based on sinusoidal variation of displacement field trough the thickness, the shear stresses on top and bottom surfaces of plate were vanished and the shear correction factor was avoided. Governing equations of equilibrium were derived from the principle of virtual displacements. Analytical solutions of the stress analysis were obtained for simply supported FGM plates. The obtained results of the displacements and stresses were compared with those predicted by other plate theories available in the literature. This study demonstrates the sensitivity of the obtained results to different homogenization models and that the results generated may vary considerably from one theory to another. Finally, this study offers benchmark results for the multi-scale analysis of functionally graded plates.

Finite Element Analysis of the Tire Contact Problem (타이어 접지문제의 유한요소 응력해석)

  • Han, Y.H.;Kim, Y.H.;Huh, H.;Kwak, Y.K.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.820-830
    • /
    • 1989
  • The tire inflation and contact problem has been solved by a finite element method. The finite element formulation is derived from the equilibrium equations by the principle of virtual work in the form of an updated Lagrangian formulation for incremental analysis. Then, a contact formulation is added to the finite element formulation to calculate stress state of tire in contact with flat rigid road under the load due to the self-weight of a vehicle. In the finite element analysis, equations of effective material properties are introduced to analyze a plane strain model of the shell-like tire by considering the bending effect of reinforced steel cords. The proposed equations of effective material properties produced stress concentration around the edge of belt layers, which does not appear when other well-known equations of material properties are adopted. The result from the above algorithm demonstrates the validity of the formulation and the proposed equations for the effective elastic constants. The result fully interprets the cause of separation between belt layers by showing the stress concentration.

Effective Strength of 3-Dimensional Concrete Strut (3차원 콘크리트 스트럿의 유효강도)

  • Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.403-413
    • /
    • 2014
  • For the reliable design of the structural concrete by the strut-tie model approaches of current design codes, the effective strengths of concrete struts must be determined with sufficient accuracy. Many values and equations for the effective strengths have been suggested until now. As those are for the two-dimensional concrete struts, however, it is inappropriate to employ them in the strut-tie model designs of three-dimensional structural concretes. In this study, an approach, that determines the effective strengths of three-dimensional concrete struts consistently and accurately by reflecting the state of 3-dimensional stresses, the 3-dimensional failure criteria of concrete, the degree of cracks (or tensile strains of reinforcing bars crossing the struts), the strut's longitudinal length, the deviation angle between strut orientation and compressive principal stress flow, compressive strength of concrete, and the degree of concrete confinement by reinforcing bars, is proposed. To examine the validity of the proposed approach, the ultimate strength analyses of 115 reinforced concrete pile caps tested to failure by previous investigators were conducted by the ACI 318-11's strut-tie model approach with the existing and proposed effective strengths of concrete struts.

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴특성)

  • Lee, Yun;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.215-220
    • /
    • 2001
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By varying strength and age, load-crack mouth opening displacement curves were obtained and the results were analyzed by linear elastic fracture mechanics. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete age from 1 day to 28 days. The obtained fracture parameters at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

  • PDF

Notch Radius Effect for Static Fracture Toughness of Al 7175 Alloys (Al 7175 합금의 정적 파괴인성에 미치는 노치반경 영향)

  • 김재훈;김덕회;박성욱;문순일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.84-87
    • /
    • 2002
  • In this study, intrinsic fracture toughness of Al 7175-T74 is evaluated from the apparent toughness of notched specimen. Modified average stress model is used to establish the relationship to predict the intrinsic fracture toughness from the apparent fracture toughness of a notched-cracked specimen. The modified average stress model is established the relation between notch radius and effective distance calculated by FEM analysis. The results show that fracture toughness decreases with decreasing of notch root radius. The true fracture toughness can be predicted from test results of apparent fracture toughness measured by using notched specimen.

  • PDF