• Title/Summary/Keyword: effective shear modulus

Search Result 112, Processing Time 0.026 seconds

The effects of End Platens on Effective Stresses in Resonant Column (RC) Specimens during Consolidation (공진주 시험기 단부가 압밀중인 시료의 유효응력에 미치는 영향)

  • Bae, Yoon-Shin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.29-42
    • /
    • 2008
  • The objective of this study is to investigate the effects of rigid end platens on effective stresses in soil mass during consolidation. The friction between the teeth of top cap/base pedestal and the specimen during consolidation decreases the radial and tangential effective stresses in RC specimens. However, it is unpractical to measure the effective stresses in the soil specimen. Two approaches were used to evaluate the state of stress in RC specimens during consolidation. First, careful measurements were made of small strain shear modulus, $G_{max}$ in specimens with carefully controlled void ratios and stress histories, to infer the state of stress. And second, a finite element analysis was performed to analytically evaluate the effect of various soil parameters on the state of stress in RC specimens during consolidation. By combining these experimental and analytical results, an example was performed to predict the average state of stress in RC specimens during consolidation.

A Study on the Modified Simple Truss Model to Predict the Punching Shear Strength of PSC Deck Slabs (PSC 바닥판의 뚫림전단강도 예측을 위한 단순트러스모델 개선 연구)

  • Park, Woo Jin;Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.67-73
    • /
    • 2015
  • In this paper, the simple truss model was modified to predict the punching shear strength of long-span prestressed concrete (PSC) deck slabs under wheel load including the effects of transverse prestressing and long span length between girders. The strength of the compressive zone arounding punching cone was evaluated by the stiffness of inclined strut which was modified by considering aging effective modulus. The stiffness of springs which control lateral displacement of the roller supports consists of the steel reinforcement and prestressing which passed through the punching cone. Initial angle of struts was determined by the experimental observation to compensate for uncertainties in the complexities of the punching shear. The validity of computed punching shear strength by modified simple truss model was shown by comparing with experimental results and the experimental results were also compared with existing punching shear equations to determine level of predictability. The modified simple truss model appeared to better predict the punching shear strength of PSC deck slabs than other available equations. The punching shear strength, which was determined by snap-through critical load of modified simple truss model, can be used effectively to examine punching shear strength of long span PSC deck slabs.

An Assessment of a Resilient Modulus Model by Comparing Predicted and Measured Elastic Deformation of Railway Trackbeds (철도노반의 탄성변위 예측 및 측정을 통한 회복탄성계수 모델 평가)

  • Park, Chul-Soo;Kim, Eun-Jung;Oh, Sang-Hoon;Kim, Hak-Sung;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1404-1414
    • /
    • 2008
  • In the mechanistic-empirical trackbed design of railways, the resilient modulus is the key input parameter. This study focused on the resilient modulus prediction model, which is the functions of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered soil, and crushed-rock soil mixture. The model is composed with the maximum Young's modulus and nonlinear values for higher strain in parallel with dynamic shear modulus. The maximum values is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea was evaluated using a 3-D nonlinear elastic computer program (GEOTRACK) and compared with measured elastic vertical displacement during the passages of freight and passenger trains. The material types of sub-ballasts are crushed stone and weathered granite soil, respectively. The calculated vertical displacements within the sub-ballasts are within the order of 0.6mm, and agree well with measured values with the reasonable margin. The prediction models are thus concluded to work properly in the preliminary investigation.

  • PDF

Analysis of Flexible Textile Composites with Large Shear Deformation (전단 대변형을 고려한 유연직물복합재료 해석)

  • Suh, Young-Wook;Woo, Kyeong-Sik;Kang, Wang-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.734-739
    • /
    • 2008
  • In this study, the nonlinear mechanical behavior of flexible textile composites was predicted by two-step analyses: micromechanics and mesomechanics. The effective material properties for fiber tows of flexible textile composite lamina were calculated in micromechanics, which were then used to calculate the effective tensile stress-strain curve of flexible textile composites in mesomechanics. A user defined material algorithm was developed and inserted in ABAQUS to account for the geometric non-linearity due to the large rotation and shear deformation of fiber tows in mesomechanics. It was found that the stress-strain behavior of flexible textile composites exhibited significant non-linearity. The effective tensile modulus agreed well with the test result.

Stress-Strain Behavior of Flexible Pavement Reinforced with Geosynthetics (토목섬유로 보강된 아스팔트포장의 응력-변형 거동특성)

  • Ahn, Tae-Bong;Yang, Sung-Chul;Cho, Sam-Deok;Kim, Nam-Ho
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.151-163
    • /
    • 2001
  • Very few studies have been attempted to understand the stress-strain behavior of flexible pavements reinforced with geosynthetics in the middle of asphalt layer. In this study, the flexible asphalt layer was analyzed with finite element method to understand stress-strain behavior. The asphalt layer was reinforced with glass grid and geogrid. The reinforcement was applied in the asphalt layer to prevent its excessive deformation and shear failure. The location of installation and stiffness of the geosynthetics were varied to obtain optimum depth of reinforcement and proper modulus. The results indicate that geosynthetics are more effective for reducing maximum shear stress than those of vertical stress and vertical displacement. Maximum shear stress decreased 15$\sim$20%, and glass grid with high value of modulus was the most effective. Also, in order to prevent failure of asphalt layer, reinforcement should be installed in the 3cm$\sim$5cm depth.

  • PDF

Development of Multiscale Homogenization Model to Predict Thermo-Mechanical Properties of Nanocomposites including Carbon Nanotube Bundle (탄소나노튜브 다발을 포함하는 나노복합재료의 열-기계 특성 예측을 위한 멀티스케일 균질화 모델 개발)

  • Wang, Haolin;Shin, Hyunseong
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.198-204
    • /
    • 2020
  • In this study, we employ the full atomistic molecular dynamics simulation and finite element homogenization method to predict the thermo-mechanical properties of nanocomposites including carbon nanotube bundle. As the number of carbon nanotubes within the single bundle increases, the effective in-plane Young's modulus and in-plane shear modulus decrease, and in-plane thermal expansion coefficient increases, despite the same volume fraction of carbon nanotubes. To investigate the thickness of interphase zone, we employ the radial density distribution. It is investigated that the interphase thickness is almost independent on the number of carbon nanotubes within the single bundle. It is assumed that the matrix and interphase are isotropic materials. According to the predicted thermo-mechanical properties of interphase zone, the Young's modulus and shear modulus of interphase zone clearly decrease, and the thermal expansion coefficient increases. Based on the thermo-mechanical interphase behavior, we developed the multiscale homogenization model to predict the thermo-mechanical properties of PLA nanocomposites that include the carbon nanotube bundle.

An Experimental Study on the Mechanical Properties of High Modulus Carbon-Epoxy Composite in Salt Water Environment (염수 환경에 노출된 고강성 탄소/에폭시 복합재의 물성치 변화 연구)

  • Moon, Chul-Jin;Lee, Cheong-Lak;Kweon, Jin-Hwe;Choi, Jin-Ho;Jo, Maeng-Hyo;Kim, Tae-Gyeong
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2008
  • The main objective of this study is to investigate the effect of salt water on the mechanical properties of a high modulus carbon-epoxy composite. Specimens were made of a carbon-epoxy composite UPN139B of SK Chemical and tested under inplane tension and shear after 0, 1, 3, 6, 9, and 12 months immersion in 3.5% salt water. Acceleration technique such as temperature elevation was not used. The tensile strengths and modulli in fiber and matrix direction did not show any remarkable degradation until 12 months immersion. In contrast to the tensile properties, shear strength and modulus started to gradually decrease up to about 10% of values of dry specimens after 12 months immersion. It was confirmed through the test that the material UPN139B can be an effective material for the shell structures in salt water to resist against the external pressure buckling because of the high fiber directional modulus and corrosion resistance.

Short- and long-term analyses of shear lag in RC box girders considering axial equilibrium

  • Xiang, Yiqiang;He, Xiaoyang
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.725-737
    • /
    • 2017
  • An analytical method considering axial equilibrium is proposed for the short- and long-term analyses of shear lag effect in reinforced concrete (RC) box girders. The axial equilibrium of box girders is taken into account by using an additional generalized displacement, referred to as the longitudinal displacement of the web. Three independent shear lag functions are introduced to describe different shear lag intensities of the top, bottom, and cantilever plates. The time-dependent material properties of the concrete are simulated by the age-adjusted effective modulus method (AEMM), while the reinforcement is assumed to behave in a linear-elastic fashion. The differential equations are derived based on the longitudinal displacement of the web, the vertical displacement of the cross section, and the shear lag functions of the flanges. The time-dependent expressions of the generalized displacements are then deduced for box girders subjected to uniformly distributed loads. The accuracy of the proposed method is validated against the finite element results regarding the short- and long-term responses of a simply-supported RC box girder. Furthermore, creep analyses considering and neglecting shrinkage are performed to quantify the time effects on the long-term behavior of a continuous RC box girder. The results show that the proposed method can well evaluate both the short- and long-term behavior of box girders, and that concrete shrinkage has a considerable impact on the concrete stresses and internal forces, while concrete creep can remarkably affect the long-term deflections.

Experimental Study on Characteristics of Low Hardness Rubber Bearing (저경도 고무받침의 특성에 관한 실험적 연구)

  • 정길영;하동호;박건록;권형오
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.39-49
    • /
    • 2002
  • In this paper, the characteristics of RB(rubber bearing) were studied by various prototype tests on RB with low hardness rubber. The characteristics of RB were tested on displacements, repeated cycles, frequencies, vertical pressures, temperature, vertical stiffness and the capability of shear deformation. The prototype test showed that the displacement and vertical pressures were the most governing factors influencing on characteristics of RB. The effective stiffness and equivalent damping of RB showed small increment in high frequency range. After the repeated cyclic test with 50's cycles, the effective stiffness and equivalent damping of RB were almost constant compared with those of the 1st cycles due to low hysteretic damping. The shear modulus of RB was reduced after large deformation, and this value of RB was partly recovered after 40 days. Finally, the shear failure test of RB was conducted, the prototype was failed over 490% of shear strain, and real size RB was failed over 430% of shear strain.

Theoretical investigation on vibration frequency of sandwich plate with PFRC core and piezomagnetic face sheets under variable in-plane load

  • Arani, Ali Ghorbanpour;Maraghi, Zahra Khoddami;Ferasatmanesh, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.65-76
    • /
    • 2017
  • This research investigated the vibration frequency of sandwich plate made of piezoelectric fiber reinforced composite core (PFRC) and face sheets of piezomagnetic materials. The effective electroelastic constants for PFRC materials are obtained by the micromechanical approach. The resting medium of sandwich plate is modeled by Pasternak foundation including normal and shear modulus. Besides, sandwich plate is subjected to linearly varying normal stresses that change by load factor. The coupled equations of motion are derived using first order shear deformation theory (FSDT) and energy method. These equations are solved by differential quadrature method (DQM) for simply supported boundary condition. A detailed numerical study is carried out based on piezoelectricity theory to indicate the significant effect of load factor, volume fraction of fibers, modulus of elastic foundation, core-to-face sheet thickness ratio and composite materials on dimensionless frequency of sandwich plate. These findings can be used to aerospace, building and automotive industries.