• Title/Summary/Keyword: effective quantum yield

Search Result 29, Processing Time 0.023 seconds

Photosynthetic Characteristics of Porphyra yezoensis Ueda Measured in situ by Diving Pulse-Amplitude Modulated (PAM) Fluorometry on the Southwestern Coast of the Korean Peninsula (남서해역에서 양식되는 방사무늬김(Porphyra yezoensis Ueda)의 Diving-PAM에 의한 광합성 특성)

  • Kim, Jeong Bae;Lee, Won-Chan;Kim, Hyung Chul;Choi, Hee-Gu;Park, Jung-Im;Cho, Yoonsik;Park, Hwan Hee
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.3
    • /
    • pp.210-218
    • /
    • 2012
  • The morphological characteristics, carbon and nitrogen concentrations, stable isotope values and photosynthetic rates of Porphyra yezoensis were studied at the main purple lavers production areas on southwestern coast of Korea. The morphological characteristics of leaf length, leaf width and weight of Porphyra blades were between 11.6~16.3 (average 13.8) cm, 4.6~6.3 (average 5.4) cm, $1.1{\sim}2.6(average\;1.86)g\;DW\;m^{-2}$, respectively. Photosynthetic pigment of Chl a concentration of Porphyra blades was between $2.18{\sim}17.77(average\;9.65)mg\;DW\;Chl\;a\;m^{-2}$. Carbon and nitrogen concentrations of Porphyra blades was between $201{\sim}317(average\;240)mg\;DW\;g^{-1}$, $39.8{\sim}50.0(average\;43.5)mg\;DW\;g^{-1}$ and C/N ratio 5.0~6.7 (average 5.5). The range of average ${\delta}^{13}C$ and ${\delta}^{15}N$ values of Porphyra blades was between - 25.6 to - 24.0 (average - 24.7)‰ for ${\delta}^{13}C$, and 1.3 to 4.1 (average 2.1)‰ for ${\delta}^{15}N$. Photosynthetic characteristics of seaweeds measured by pulse amplitude modulation (PAM) fluorometry was used as an indicator of photosynthetic activity. We use Diving-PAM fluorometry to examine photosynthetic rates of the seaweeds Porphyra yezoensis at each station. Maximum quantum yield of Porphyra blades was between 0.46~0.55 (average 0.52), the variance of the effective PS II maximum quantum yield of the station was broadly similar. Maximum relative electron transport rate (rETRmax) of Porphyra blades was between $4.71{\sim}5.84(average\;5.33){\mu}mol\;electrons\;m^{-2}\;s^{-1}$, the changes of maximum relative electron transport rate (rETRmax) of Porphyra yezoensis were similar to those of PS II maximum quantum yield. Photosynthetic efficiency (${\alpha}$) was between 0.027~0.045 (average 0.036). Minimum saturating irradiance ($E_k$) range was $139{\sim}180(average\;156){\mu}mol\;photons\;m^{-2}\;s^{-1}$. Minimum saturating irradiance ($E_k$) made a difference by station within the area on southwestern coast. Carbon and nitrogen concentrations and photosynthetic rates of Porphyra blades production areas on southwestern coast were broadly similar. The photosynthetic characteristics showed low photosynthetic rates because the low maximum quantum yields and low maximum relative electron transport rate.

Assessment of Heavy Metal Effects on the Freshwater Microalga, Chlorella vulgaris, by Chlorophyll Fluorescence Analysis (엽록소형광분석을 이용한 담수산 클로렐라(Chlorella vulgaris)에 미치는 중금속의 영향 평가)

  • Oh, Soon-Ja;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1591-1600
    • /
    • 2015
  • The response of the freshwater microalga, Chlorella vulgaris, to heavy metal stress was examined based on chlorophyll fluorescence analysis to assess the toxic effects of heavy metals in freshwater ecosystems. When toxic effects were analyzed using regular chlorophyll fluorescence analysis, photosystem II activity($F_v/F_m$) decreased significantly when exposed to $Cu^{2+}$ and $Hg^{2+}$ for 12 h, and decreased in the order of $Hg^{2+}>Cu^{2+}>Cd^{2+}>Ni^{2+}$ when exposed for 24h. The effective photochemical quantum yield(${\phi}{\prime}_{PSII}$), chlorophyll fluorescence decrease ratio($R_{Fd}$), minimal fluorescence yield($F_o$), and non-photochemical quenching(NPQ), but not photochemical quenching(qP), responded sensitively to $Hg^{2+}$, $Cu^{2+}$, and $Cd^{2+}$. These results suggest that $F_v/F_m$, as well as ${\phi}{\prime}_{PSII}$, $R_{Fd}$, $F_o$, and NPQ could be used to assess the effects of heavy metal ions in freshwater ecosystems. However, because many types of heavy metal ions and toxic compounds co-occur under natural conditions, it is difficult to assess heavy metal toxicity in freshwater ecosystems. When Chlorella was exposed to heavy metal ions for 12 or 24h, $F_v/F_m$ and maximal fluorescence yield($F_m$) changed in response to $Hg^{2+}$ and $Cu^{2+}$ based on image analysis. However, assessing quantitatively the toxic effects of several heavy metal ions is challenging.

Complex refractive index of PECVD grown DLC thin films and density variation versus growth condition (PECVD 방법으로 성장시킨 DLC 박막의 복소굴절율 및 성장조건에 따른 박막상수 변화)

  • 김상준;방현용;김상열;김성화;이상현;김성영
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 1997
  • The complex refractive index of Diamond-like Carbon (DLC) thin films, which can be applied to optical devices or electrical devices, have been determined using optical methods. DLC thin films are grown on Si(100) substrates and vitreous silica substrates respectively, using the technique of plasma enhanced chemical vapor deposition (PECVD). The spectroscopic ellipsometry data($\psi$, $\Delta$) and the transmission spectra of these DLC films are obtained. These optical spectra are analyzed with the help of the Sellmeier dipersion relation and a quantum mechanically derived dispersion relation. Using spectroscopic ellipsometry data at their transparent region, the refractive index and the effective thickness of DLC films on vitreous silica are model calculated, Then the transmission spectra are inverted to yield the extinction coefficient spectra k(λ) at absorbing region. These spectra are fit to the quantum mechanical dispersion relation and the best fit dispersion constants are determined. The complex refractive indices are easily calculated with these constants. The spectroscopic ellipsometry data at the absorbing region in model calculated to give the packing densities and the degrees of surface microroughness of DLC films. Discussions are made in correlation with the growth condition of DLC films.

  • PDF

Visual Analysis for Detection and Quantification of Pseudomonas cichorii Disease Severity in Tomato Plants

  • Rajendran, Dhinesh Kumar;Park, Eunsoo;Nagendran, Rajalingam;Hung, Nguyen Bao;Cho, Byoung-Kwan;Kim, Kyung-Hwan;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.300-310
    • /
    • 2016
  • Pathogen infection in plants induces complex responses ranging from gene expression to metabolic processes in infected plants. In spite of many studies on biotic stress-related changes in host plants, little is known about the metabolic and phenotypic responses of the host plants to Pseudomonas cichorii infection based on image-based analysis. To investigate alterations in tomato plants according to disease severity, we inoculated plants with different cell densities of P. cichorii using dipping and syringe infiltration methods. High-dose inocula (${\geq}10^6cfu/ml$) induced evident necrotic lesions within one day that corresponded to bacterial growth in the infected tissues. Among the chlorophyll fluorescence parameters analyzed, changes in quantum yield of PSII (${\Phi}PSII$) and non-photochemical quenching (NPQ) preceded the appearance of visible symptoms, but maximum quantum efficiency of PSII ($F_v/F_m$) was altered well after symptom development. Visible/near infrared and chlorophyll fluorescence hyperspectral images detected changes before symptom appearance at low-density inoculation. The results of this study indicate that the P. cichorii infection severity can be detected by chlorophyll fluorescence assay and hyperspectral images prior to the onset of visible symptoms, indicating the feasibility of early detection of diseases. However, to detect disease development by hyperspectral imaging, more detailed protocols and analyses are necessary. Taken together, change in chlorophyll fluorescence is a good parameter for early detection of P. cichorii infection in tomato plants. In addition, image-based visualization of infection severity before visual damage appearance will contribute to effective management of plant diseases.

Effect of salinity on growth and nutrient uptake of Ulva pertusa (Chlorophyta) from an eelgrass bed

  • Choi, Tae-Seob;Kang, Eun-Ju;Kim, Ju-Hyoung;Kim, Kwang-Young
    • ALGAE
    • /
    • v.25 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • The effects of salinity on various ecophysiological parameters of Ulva pertusa such as growth, nutrient uptake, photosynthetic performance and internal nutrient composition were tested. U. pertusa was collected from an eelgrass bed in a semi-protected embayment on the southwest coast of Korea. Under salinity regimes from 5 to 40 psu, the specific growth rates $(\mu)$ of U. pertusa ranged from 0.019 to $0.032\;d^{-1}$. Maximum growth rate was observed at 20 psu, and minimum at 40 psu. This species showed various uptake rates for nitrate and phosphate. Nutrient uptake was noticeably higher at intermediate salinity levels, and lower at both extremes. Salinity significantly influenced chlorophyll-$\alpha$ content and effective quantum yield. Tissue nitrogen content ranged from 1.5 to 2.9% N (dry weight), whereas tissue phosphorus ranged from 0.1 to 0.14% P (dry weight). The N : P ratio in the tissue of U. pertusa was considerably higher, ranging from 30 to 50. Increased growth at lower salinity suggests that the initial growth rate of U. pertusa is greater during the rainy season (i.e., late spring and early summer) than any other season during the year. The appearance of an Ulva bloom in eelgrass beds may be triggered by salinity more than by other environmental factors such as light and temperature.

Detection of Volatile Organic Compounds (VOCs) using Organic-Inorganic Hybrid Perovskite Nanoparticles (유무기 페로브스카이트 나노입자의 휘발성 유기화합물 감응특성)

  • Choi, Hansol;Choi, Jihoon
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.515-521
    • /
    • 2020
  • Organic-inorganic hybrid perovskite nanocrystals have attracted a lot of attention owing to their excellent optical properties such as high absorption coefficient, high diffusion length, and photoluminescence quantum yield in optoelectronic applications. Despite the many advantages of optoelectronic materials, understanding on how these materials interact with their environments is still lacking. In this study, the fluorescence properties of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanoparticles are investigated for the detection of volatile organic compounds (VOCs) and aliphatic amines (monoethylamine, diethylamine, and trimethylamine). In particular, colloidal MAPbBr3 nanoparticles demonstrate a high selectivity in response to diethylamine, in which a significant photoluminescence (PL) quenching (~ 100 %) is observed at a concentration of 100 ppm. This selectivity to the aliphatic amines may originate from the relative size of the amine molecules that must be accommodated in the perovskite crystals structure with a narrow range of tolerance factor. Sensitive PL response of MAPbBr3 nanocrystals suggests a simple and effective strategy for colorimetric and fluorescence sensing of aliphatic amines in organic solution phase.

Development of Micro-hemisphere Flexible PDMS Film for Enhancing Light Extraction in Organic Light-emitting Devices (유기발광소자의 광추출 향상을 위한 미세 반구형 유연 필름 연구)

  • Baek, Dong-Hyun;Bae, Eun-Jeong;Maeng, Hyeongkyu;Shin, Ji Soo;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.1-5
    • /
    • 2022
  • We presented a micro hemi-sphere structure flexible film to improve the external quantum efficiency (EQE) in OLEDs. The micro hemi-sphere flexible film was fabricated with breath figure (BF) method and replica process. At 45 mg/mL of concentration, the size of the hemi-spheres was approximately 6.2 ㎛ were obtained which are the most circular shape. So, it was possible to yield the best performance with an improvement of 33 % in the EQE and the widest viewing angle ranging from 0° to 70°. As a result, the hemi-sphere film's size and distribution seem to play important roles in enhancing the EQE in OLEDs. Furthermore, the flexible hemi-sphere film based on polymeric materials could offer an effective, large-scale, mass-produced product and a simple process and approach to achieve high efficiency in flexible OLEDs.

Efficient Cyclization of Substituted Diphenols : Application to the Synthesis of Sulforhodamine B (치환 다이페놀의 효율적 고리화 반응: 설퍼로다민B의 합성에의 응용)

  • Park, Min Kyun;Shim, Jae Jin;Ra, Choon Sup
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 2015
  • Rhodamine dyes are widely used as fluorescent probes because of their excellent photophysical properties, such as high extinction coefficients, excellent quantum yields, great photostability, relatively long emission wavelengths. A great synthetic effort has been focused on developing efficient and practical procedures to prepare rhodamine derivatives, because for most applications the probe must be covalently linked to another (bio)molecule or surface. Sulforhodamine B is one of the most used rhodamine dyes for this purpose, because it carries two sulfoxy functions which can be easily utilized for binding with other molecules. Recently, we needed an expedient, practical synthesis of sulforhodamine derivatives. We found the existing procedure for obtaining those compounds unsatisfactory, particularly, with the cyclization process of the dihydroxytriarylmethane (1) to produce the corresponding xanthene derivative (2). We report here our findings, which represent modification of the existing literature procedure and provide access to the corresponding xanthene derivative (2) in a high yield. Use of methanol as a co-solvent was found quite effective to prohibit the water molecule produced during the cyclization reaction from retro-cyclizing back to the starting dihydroxytriarylmethane and the yield of the cyclization was increased (up to 84% from less than 20%). The reaction temperature was significantly lowered (80 vs. 135 ℃). Thus, the reaction proceeds in a higher yield and energy-saving manner where the use of reactants and the production of chemical wastes is minimized.

Influence of UV-B Radiation on Photosynthesis, Growth and Pigmentation of Chondrus ocellatus (Rhodophyta) from Shallow Water

  • Taejun Han;Han, Young-Seok;Cho, Man-Gee;Park, Jin-Hee;Goo, Jae-Gun;Kang, Sung-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.368-376
    • /
    • 2003
  • The UV-B sensitivity was tested for the intertidal species Chondrus ocellatus from Korea, by measuring photosynthesis estimated as effective quantum yield ($\Phi_{PSII}$) of photosystem II (PS II), growth and content and composition of photosynthetic pigments and UV-absorbing pigments (UVAPs). The $$\Phi_{PSII}$ of the alga decreased with increasing time of exposure to UV-B radiation, followed by fast and nearly full recovery indicating dynamic photoinhibiton. Fresh weight-based growth and pigment contents of C. ocellatus were not seriously affected by UV-B radiation. A single broad peak at 327 nm was obtained from methanol extracts of C. ocellatus, and the absorbance peak increased with increasing UV. The single peak was resolved into three peaks (311, 330 and 336 nm) by the fourth -derivative, and quantitative change in response to UV-B radiation occurred only at 330 nm. High performance liquid chromatography (HPLC) analysis of purified extracts indicated that three MAAs (mycosporine-like amino acids) are present, asterina 330, palythine and shinorine. Field observations during three growing months showed that C. ocellatus exhibit the highest amount of UVAPs in May followed by July and little trace in September, coinciding with the species' phenology. In an ecological context, dynamic photoinhibition as well as accumulation of UVAPs may enable the shallow water red alga C. ocellatus to be well adapted to high UV-B environments.

Synergistic effects of elevated carbon dioxide and sodium hypochlorite on survival and impairment of three phytoplankton species

  • Kim, Keunyong;Kim, Kwang Young;Kim, Ju-Hyoung;Kang, Eun Ju;Jeong, Hae Jin;Lee, Kitack
    • ALGAE
    • /
    • v.28 no.2
    • /
    • pp.173-183
    • /
    • 2013
  • Sodium hypochlorite (NaOCl) is widely used to disinfect seawater in power plant cooling systems in order to reduce biofouling, and in ballast water treatment systems to prevent transport of exotic marine species. While the toxicity of NaOCl is expected to increase by ongoing ocean acidification, and many experimental studies have shown how algal calcification, photosynthesis and growth respond to ocean acidification, no studies have investigated the relationship between NaOCl toxicity and increased $CO_2$. Therefore, we investigated whether the impacts of NaOCl on survival, chlorophyll a (Chl-a), and effective quantum yield in three marine phytoplankton belonging to different taxonomic classes are increased under high $CO_2$ levels. Our results show that all biological parameters of the three species decreased under increasing NaOCl concentration, but increasing $CO_2$ concentration alone (from 450 to 715 ${\mu}atm$) had no effect on any of these parameters in the organisms. However, due to the synergistic effects between NaOCl and $CO_2$, the survival and Chl-a content in two of the species, Thalassiosira eccentrica and Heterosigma akashiwo, were significantly reduced under high $CO_2$ when NaOCl was also elevated. The results show that combined exposure to high $CO_2$ and NaOCl results in increasing toxicity of NaOCl in some marine phytoplankton. Consequently, greater caution with use of NaOCl will be required, as its use is widespread in coastal waters.