• Title/Summary/Keyword: effective parameter

Search Result 1,653, Processing Time 0.035 seconds

Empirical Data Analysis of a Social Network Name-Directory Service with Advertisements (광고를 동반한 소셜 네트워크 이름-디렉터리 서비스의 실험적 데이터 분석)

  • Kim, Yung Bok
    • Journal of Information Technology Services
    • /
    • v.13 no.4
    • /
    • pp.189-203
    • /
    • 2014
  • With the evolution of Internet technologies and the increasing variety of Internet devices, advertisements in various web services have also expanded. Interactive web services often go hand in hand with effective advertisements for a business model. We estimated statistical parameters of the interactive web server for service monitoring and advertisement-effect. In the web pages, we integrated the plugins of social networking services (SNSs) (e.g. Facebook, Twitter) and an advertisement scheme (e.g. Google AdSense) that regards social name-directory contents. Empirical data analysis and statistical results are presented with the implementation of estimations of parameters (e.g. utilization-level and serviceability) and advertisements in a social networking name-directory service (http://ktrip.net or http://한국.net). We found that estimated parameters were applicable to service monitoring of web-server as well as to synthesis of advertisement-effect in our social-web name-directory service.

Semiparametric Kernel Poisson Regression for Longitudinal Count Data

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.1003-1011
    • /
    • 2008
  • Mixed-effect Poisson regression models are widely used for analysis of correlated count data such as those found in longitudinal studies. In this paper, we consider kernel extensions with semiparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method based on kernel trick and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of hyperparameters, cross-validation techniques are employed. Examples illustrating usage and features of the proposed method are provided.

Application of CAE Techinique for the Optimization of Press Forming Condition of Low Arm (로우암 프레스 성형 조건의 최적화를 위한 CAE 기술의 적용)

  • 김영석;이택근;김성태
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.257-264
    • /
    • 2000
  • In this study, optimization for press forming condition of low arm was performed with explicit dynamic FEM code, Pam-Stamp. FEM simulation was coupled with the Taguchi's experiment technique having three design variables - friction coefficient, plastic anisotropy parameter, and blank shape - which are chosen to be optimized. The simulation results were compared with those of experiment. We found out the change of blank shape among these three design variables is very effective in optimizing press forming condition of low arm. In addition, the modified blank shape shows high yield of slitting coil.

  • PDF

Characteristics of Cut Surface by Abrasive Waterjet Cutting of Titanium Alloy (티타늄 합금의 연마제 워터 제트 절단에 의한 절단표면 특성)

  • Chung Nam-Yong;Jin Yun-Ho
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.86-93
    • /
    • 2005
  • Abrasive waterjet (AWJ) can provide a more effective means for precision of difficult -to-machining materials such as ceramics and titanium alloys. The present study is focused on the surface roughness of abrasive waterjet cut surfaces. This paper investigated theoretical and experimental surface characteristics associated with abrasive waterjet cutting of titanium alloy Gr2. It is shown that the proper variations of several cutting parameters such as waterjet cutting pressure, cutting speed and cutting depth improve the roughness and characteristics on specimen surfaces produced by AWJ cutting. From the experimental results by AWJ cutting of titanium alloy Gr2, the optimal cutting conditions to improve the surface roughness and precision were proposed and discussed.

Case Study on the Determination of the Parameters in the Horton's Infiltration Model (Horton 침투 모형의 매개변수 결정 사례)

  • Yoo, Ju-Hwan;Yoon, Yeo-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.107-111
    • /
    • 2009
  • The parameters in the Horton's model which has well known as typical infiltration model were determined by the use of the optimization technique. It was assumed the initial infiltration capacity in this model was related to the antecedent precipitation per 10 days with linear combination. And both the parameters of the ultimate infiltration capacity and the decay factor were determined uniquely on a basin. Thus the optimal model's parameters representative to a basin were obtained and the Horton's infiltration equations by rainstorm events were determined. The data of ten rainstorm events for this study were observed at the Jeonjeokbigyo station located at the Selmacheon experimental basin that was $8.5\;km^2$ wide in the Imjin river.

  • PDF

Analysis on Particle Shape Characteristics of Jumunjin Sand using Fourier Descriptor (Fourier descriptor를 이용한 주문진표준사의 형상특성분석)

  • Min, Tuk-Ki;Kim, Seong-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1182-1189
    • /
    • 2010
  • The mechanical behavior of a granular material is governed by the applying effective stresses and its skeletal structure which is considered to be the packing of particles giving overall density and degree of anisotropic. Factors that affect soil packing are the particle size, size distribution and shape, and the arrangement of grain contact. Soil particle size and shape are the most important factor, but difficult to quantify. In this study, 2D Fourier analysis is applied to quantify the shape of granular particles. Jumunjin sand was used in the experiment and particle images are captured using an optical microscope. The results showed that three lower order Fourier descriptor are closely related with roundness, sphericity of the granular particle. Also statistical approach is used to determine roundness, form factor, elongation ratio, roughness of Jumunjin sand.

  • PDF

A New Robust Digital Sliding Mode Control with Disturbance Observer for Uncertain Discrete Time Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • In this paper, a new discrete variable structure controller based on a new sliding surface and discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed sliding surface. The discrete version of the disturbance observer is derived for the effective compensation of the effect of uncertainties and disturbances. A corresponding control input with the disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined sliding surface for guaranteeing the designed output in the sliding surface from any initial condition to the origin for all the parameter variations and disturbances. By using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

A Study on Key Parameters and Characteristics in the Manufacturing Process of the Dual Pickup Objective Lens (Dual Pickup 대물렌즈의 생산을 위한 주요 Parameter 및 특성에 관한 연구)

  • Woo, Sun-Hee;Lee, Dong-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.117-124
    • /
    • 2007
  • In order to operate CD and DVD compatibly in a pickup system, the objective lens comprise diffractive optical element(DOE) zone and aspheric curvature on its lens surface. The DOE objective lens is effective to simplify this dual-purpose pickup system of the 655nm and 785nm wavelength by using only one lens, but requires more precision manufacturing process and system due to the complicated shape. This paper presents the overall manufacturing process of this objective lens and describes main parameters in each process, for the correction of the aspheric surface in its core, the shrinkage compensation after injection molding, and the uniformity compensation by adjusting molding conditions.

Application of Axiomatic Design Theory in Manufacturing System Design (공리적 설계 기법을 이용한 생산시스템 설계 지원 방안에 대한 고찰)

  • 백태진;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.82-86
    • /
    • 2004
  • To cope with the challenge from global market characterized by frequent changes in requirements, manufacturing enterprise should be able to promptly adjust its manufacturing system accordingly. Therefore, it is important to provide manufacturing system designer with an appropriate methodology to (re-)design a manufacturing system subject to requirements change. Axiomatic design theory focuses design activity mainly on functional consideration rather than physical, and has been known as effective especially in the conceptual design phase. This paper introduces an approach to apply the axiomatic design principle to manufacturing system design. It is shown that a new design solution can be reached quickly by finding design parameters for the added or revised functional requirements and thus achieving a set of functional requirements as well as design parameters that satisfy the independence axiom. Some illustrative examples are also given.

  • PDF

Cooling effect of an electronic module with a variation of the inlet air temperature (유입공기의 온도변화가 전자모듈의 냉각에 미치는 영향)

  • 이진호;조성훈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.264-273
    • /
    • 2001
  • The conjugate heat transfer from a protruding module in a horizontal channel with a variation of air temperature is experimentally investigated. It is an aim of this study is to estimate temperature difference between a module and air. This study is performed with a variation of parameters that are air temperatures($T_i,=25^{\circ}C{\sim}55^{\circ}C),$ thermal resistance($R_c=158 K/W),$ air velocities ( 4V_i=0.1$ m/s~l.5 m/s ), and input power (Q=3 W, 7 W ). The results show that as the thermal resistance increases, the effect of air temperatures are decreased. And input power was most effective parameter on the temperature difference between a module and air.

  • PDF