• Title/Summary/Keyword: effective parameter

Search Result 1,653, Processing Time 0.029 seconds

Evaluation of CPTU Cone Factor of Silty Soil with Low Plasticity Focusing on Undrained Shear Strength Characteristics (저소성 실트지반의 비배수 전단강도 특성을 고려한 CPTU 콘계수 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • Laboratory and in-situ tests were conducted to evaluate the cone factors for the layers with low plasticity containing a lot of silty and sand soils from the west coast (Incheon, Hwaseong and Gunsan areas) and its applicability was evaluated based on these results. The cone factors were evaluated from 19 to 23 based on unconfined compression strengths (qu), from 13 to 13.8 based on simple CU strengths and from 11.6 to 13.1 based on field vane strengths, respectively. The unconfined compression strengths of undisturbed silty soil samples with low plasticity were considerably underestimated due to the change of in-situ residual effective stress during sampling. Half of unconfined compression strength (qu/2) based cone factors of silty soils with low plasticity fluctuated and were approximately 1.8 times higher than simple CU based values of these soils. When evaluating cone factors of these soils, it should be judged overall on the physical properties such as the grain size distribution and soil plasticity and on the fluctuation of the corrected cone resistance and the sleeve friction due to the distribution of sandseam in the ground including pore pressure parameter.

A Study on the Cover Property of Offshore Reinforced Concrete Structure (내구성 해양 RC 구조물의 철근 피복적정성에 관한 연구)

  • Im, Jung-Soon;Bahng, Yun-Suk;Jo, Jae-Byung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.73-81
    • /
    • 2004
  • On this study, durability decreasing element caused by salt damage was analyzed elementally and studied with the data of the inside and outside in the country. The design strength and water-cement ratio according to diffusion coefficients of chloride were applied to Fick's diffusion equation. The required over depended on environmental conditions is estimated with endurance period, and the influences on cover according to the transformation of the each parameter were investigated. In consequence, if water-cement ratio decreases and design strength increases, it shows that slowing infiltration velocity of chloride ion can decrease required cover. Especially, it is more effective to use Portland blast-furnace slag cement into high strength concrete in the splash zone environmental conditions in blocking the diffusion of chloride ion. As the result, in the case of the offshore concrete structure needed high durability, it is needed to increase cover($3cm{\sim}8cm$) than minimum standard cover(8cm) according to environmental conditions.

Odor Emission from Sediments in Sewer Systems and Odor Removal using an Electrolytic Oxidation Process (하수관거에 퇴적된 유기물에 의한 악취 발생과 산화전리시스템을 이용한 악취 저감)

  • Ahn, Hae-Young;Shin, Seung-Kyu;Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.703-710
    • /
    • 2011
  • Odor emission from domestic sewer systems has become a serious environmental problem. An investigation on a sewer manhole revealed that anaerobic decay of sediment organic matters (SOMs) and related declines of oxidation reduction potential (ORP) in the sediment layer were the main reason of the production of volatile sulfur compounds. In addition, as the anaerobic decaying period continued, the odor intensity rapidly increased with increasing concentrations of $H_2S$ and dimethyl sulfide. As a feasible method to control SOMs and to minimize odor emission potentials, an electrolytic oxidation process has been employed to the sediment sludge phase. In this study, voltages applied to the electrolytic oxidation process were varied as a main system parameter, and its effects on odor removal efficiencies and reaction characteristics were investigated. At the applied voltages greater than 20 V, the system efficiently oxidized the organic matter, and the ORP in the sludge phase increased rapidly. As a consequence, the removal efficiency of hydrogen sulfide was found to be >99% within 60 minutes of the electrolytic oxidation. Overall, the electrolytic oxidation process can be an alternative to control odor emission from sewer systems, and a threshold input energy needs to be determined to achieve effective operation of the process.

The Effect of Application Parameter of Pulsed Direct Current on Wound Healing of Patients with Pressure Ulcer

  • Kim, Ga Yeong;Lee, Sang Bin;Moon, Ok Kon;Kim, Ji Sung;Choi, Jung Hyun;Wang, Jung San;Park, Joo Hyun;Kim, Hong Rae;Lee, Ju Hwan;Min, Kyung Ok
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.5 no.2
    • /
    • pp.752-756
    • /
    • 2014
  • This study investigated the effects of changes to the pulsation factor of pulsed direct currents on wound healing. Patients with a pressure ulcer at a care hospital for the elderly were randomly divided into three groups: Group 1 involved the application of $100{\mu}s$ in pulse duration, 10 ms in pulse period, 100 pps in a pulsation factor, 15 mA in pulse amplitude, and polarity red+ by using pulsed direct currents; Group 2 involved a change of pulse period to 8 ms; and Group 3 received general wound management. Although there were no statistically significant differences in the changing stages of pressure ulcers among the groups, all the groups dropped in numerical stages. In the two groups to which pulsed direct currents were applied, there was a statistically significant reduction in the stages of pressure ulcers from the initial assessment to the 12-week assessment (p<.05). Even though there were no statistically significant differences in changes to the area of pressure ulcers among the groups, a statistically significant decrease was found in pulsed direct current group 2 whose pulse period was shortened (p<.05). There was no difference in the healing rate of pressure ulcers among the groups, but it made a numerical increase in pulsed direct current group 1 and group 2 and a numerical decrease in group 3. There were no significant differences in the characteristics of those who had a full recovery among the groups. Those findings indicate that pulsed direct currents have positive effects on the wound healing of patients with a pressure ulcer and that a treatment with pulsed direct currents whose pulsation factor is raised by reducing the pulse duration is especially effective.

Extracting Modal Parameters of Railway Bridge under the Action of High-speed Train Using TDD Technique (TDD기법을 이용한 고속철도 교량의 동특성 추출)

  • Kim, Byeong Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.761-771
    • /
    • 2008
  • When the crossing frequency of a train meets the natural frequency of a railway bridge, the bridge is bound to become resonant. There are few available time response samples involving a train that passes a bridge at high speed. Very effective modal-parameter extraction techniques for such special high-speed railway bridge conditions are introduced in this paper. Utilizing the cross-correlations of the free-vibration responses after the train passes, mode shapes and the temporal modal parameters (e.g., natural frequency and damping ratio) are extracted using the TDD and SI techniques, respectively. This approach has been applied to a two-span steel composite bridge in the Kyung-Bu high-speed railway system. The estimation results were compared with those obtained using the existing methods. The results fully coincide with those that were extracted using the existing aforementioned technique.

Low-Load/Low-Eccentricity Performance Improvement Designs for Hydro Power Application of Cylindrical Turbine Guide Bearings - Introduction of Pad Leading-Edge Tapers (수력 원통형 터빈 가이드 베어링의 저부하/저편심 성능향상 설계 - 패드 선단 테이퍼의 도입)

  • Lee, An Sung;Jang, Sun-Yong
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • In vertical hydro/hydraulic power turbine-generator applications, traditionally, cylindrical turbine guide bearings (TGBs) are widely used to provide turbine runner shafts with smooth rotation guides and supports. All existing cylindrical TGBs with simple plain pads have drawbacks such as having no pressure generation and film stiffness at the no-load condition and in addition, at the low-load/low-eccentricity condition, having very low film stiffness values and lacking design credibility in the stiffness values themselves. In this paper, in order to fundamentally improve the low-load/low-eccentricity performance of conventional cylindrical TGBs and thus enhance their design-application availability and usefulness, we propose to introduce a rotation-directional leading-edge taper to each partitioned pad, i.e., a pad leading-edge taper. We perform a design analysis of lubrication performance on $4-Pad{\times}4-Row$ cylindrical TGBs to verify an engineering/technical usefulness of the proposed pad leading-edge taper. Analysis results show that by introducing the leading-edge taper to each pad of the cylindrical TGB one can expect a constant high average direct stiffness with a high degree of design credibility, regardless of load value, even at the low-load/low-eccentricity condition and also control the average direct stiffness value by exploring the taper height as a design parameter. Therefore, we conclude that the proposed pad leading-edge tapers are greatly effective in more accurately predicting and controlling rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems to which cylindrical TGBs are applied.

Tensile Behavior Characteristics of CANDU Pressure Tube Material Degraded by Neutron Irradiations (중수로 압력관 재료의 조사 열화에 따른 인장거동 특성)

  • An, Sang-Bok;Kim, Yeong-Seok;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.188-195
    • /
    • 2002
  • To investigate the degradation of mechanical properties induced mainly by neutron irradiation, the tensile tests were conducted from room temperature to 300\\`c using the irradiated and the unirradiated Zr-2.5Nb pressure tube materials. The irradiated longitudinal and transverse specimens were collected from the coolant inlet, middle, and outlet parts of M-11 tube which had been operated in Wolsung CANDU Unit-1 and exposed to different operating temperatures and irradiation fluences. The different tensile behavior was characterized not by the fluences of irradiation but by the tensile loading direction. The transverse specimen showed the higher strength and lower elongation than those of the longitudinal one. It was believed that these phenomena resulted from the microstructure anisotropy caused by the extrusion process. The increased strength hardening and decreased elongation embrittlement of the irradiated material were compard to those of the unirradiated one. While the tensile strength of the inlet was higher than that of the outlet, the elongation of the inlet was lower than that of outlet. Considering the operation condition, it was proposed that the operating temperature could be a more effective parameter than the irradiation fluence for long-time life. Through the TEM observation, it was found that while the a-type dislocation density was increased, the c-type dislocation was not changed in the irradiated. The fact that the higher dislocation density was sequentially distributed over the inlet, the middle, and the outlet parts was consistent with the distribution of the tensile strength.

A Study on the MgO Protective Layer Deposited by Oxygen-Neutral-Beam-Assisted Deposition in AC PDP (산소 중성빔으로 보조증착된 MgO 보호막을 갖는 AC PDP의 특성에 관한 연구)

  • Li, Zhao-Hui;Kwon, Sang-Jik
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.96-101
    • /
    • 2008
  • The magnesium oxide (MgO) protective layer plays an important role in plasma display panels (PDPs). Our previous work demonstrated that the properties of MgO thin film could be improved, which were deposited by Ion-Beam-Assisted Deposition (IBAD). However arc discharge always occurs during the IBAD process. To avoid this problem, Oxygen-Neutral-Beam-Assisted Deposition (NBAD) is used to deposit MgO thin films in this paper. The energy of the oxygen neutral beam was used as the parameter to control the deposition. The experimental results showed that the oxygen neutral beam energy was effective in determining in structural and discharge characteristics. The lowest firing inception voltage, the highest brightness and the highest luminous efficiency were obtained when the MgO thin film was deposited with an oxygen neutral beam energy of 300eV. The surface morphology of MgO thin film was also analyzed using AFM (Atomic Force Microscopy) and SEM (Scanning Electron Microscopy).

Structural and Discharge Characteristics of MgO Deposited by Oxygen-Ion-Beam-Assisted Deposition in AC PDP (산소 이온 빔 보조 증착된 AC PDP용 MgO 보호막의 특성 연구)

  • Li, Zhao-Hui;Kim, Kwang-Ho;Ahn, Min-Hung;Hong, Seng-Jae;Im, Seung-Kyeok;Kwon, Sang-Jik
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.338-342
    • /
    • 2007
  • The magnesium oxide (MgO) protective layer plays an important role in plasma display panels (PDPs). In this paper, we describe the structural and discharge properties of MgO thin films, which were prepared by the ion-beam-assisted deposition (IBAD) of oxygen as the protective layer of PDPs. The energy of the oxygen ion beam was used as the parameter to control the deposition. We found that the oxygen ion beam energy was effective in determining in structural and discharge characteristics. The lowest firing inception voltage, the highest brightness and the highest luminous efficiency were obtained when the MgO thin film was deposited with an oxygen ion beam energy of 300 eV. The crystallization of the MgO thin film was also measured by X-ray diffraction analysis, and the surface quality was measured by atomic force microscopy.

Techniques for Estimating Temper Bead Welding Process by using Temperature Curves of Analytical Solution (해석 해의 온도곡선을 이용한 템퍼비이드 용접공정 평가기술)

  • Lee, Ho-Jin;Lee, Bong-Sang;Park, Kwang-Soo;Byeon, Jin-Gwi;Jung, In-Chul
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.51-57
    • /
    • 2010
  • Brittle microstructure created in a heat affected zone (HAZ) during the welding of low alloy steel can be eliminated by post-weld heat treatment (PWHT). If the PWHT is not possible during a repair welding, the controlled bead depositions of multi-pass welding should be applied to obtain tempering effect on the HAZ without PWHT. In order to anticipate and control the tempering effect during the temper bead welding, the definition of temperature curve obtained from the analytical solution was suggested in this research. Because the analytical solution for heat flow is expressed as a mathematical equation of weld parameters, it may be effective in anticipating the effect of each weld parameter on the tempering in HAZ during the successive bead depositions. The reheating effect by the successive bead layer on the brittle coarse grained HAZ formed by earlier bead deposition was estimated by comparing the overlapped distance between the temperature curves in the HAZ. Three layered weld specimens of SA508 base metal with A52 filler were prepared by controlling heat input ratio between layers. The tempering effect anticipated by using the overlapped distance between the temperature curves was verified by measuring the micro-hardness distribution in the HAZ of prepared specimens. The temperature curve obtained from analytical solution was expected as a good tool to find optimal temper bead welding conditions.