• Title/Summary/Keyword: effective moisture diffusion

Search Result 21, Processing Time 0.024 seconds

Estimation of Effective Moisture Diffusivity of Rapeseed (Brassica napus L.) (유채 종자의 수본확산계수에 관한 연구)

  • Duc, Le Ahn;Hong, Sang-Jin;Han, Jae-Woong;Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.296-302
    • /
    • 2008
  • The effective moisture diffusivity and its dependence on drying temperature during drying of rapeseed were experimentally investigated. The data were recorded from thin layer drying experiments at nine different combinations of drying air temperatures of 40, 50, and $60^{\circ}C$ and the relative humidities of 30, 45, and 60%. The moisture diffusion equation was analyzed using stepwise multiple regression analysis. Effective moisture diffusivities were calculated based on the moisture diffusion equation for a spherical shape using Fick's second law. The effective diffusivities during the drying of rapeseed were $l.72{\times}10^{-11}$, $2.41{\times}10^{-11}$ and $3.31{\times}10^{-11}\;m^2{\cdot}s^{-1}$ at 40, 50 and $60^{\circ}C$, respectively. The activation energy for moisture diffusion during drying was $28.47\;kJ{\cdot}mol^{-1}$. The dependence of moisture diffusivity on temperature was described by an Arrhenius-type equation. Drying occurred in the falling rate period and the internal moisture diffusion phenomenon is the governing physical mechanism of the moisture movement in the particles.

Molecular Diffusion of Water in Paper (IV) - Mathematical model and fiber-phase moisture diffusivities for unsteady-state moisture diffusion through paper substrates - (종이내 수분확산 (제4보) - 종이의 비정상상태 수분확산 모델과 섬유상 수분확산 계수 -)

  • 윤성훈;박종문;이병철
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • An unsteady-state moisture diffusion through cellulosic fibers in paper was characterized from the moisture sorption experiment and the mathematical modeling. The sorption experiment was conducted by exposing thin dry paper specimens to a constant temperature-humidity environment. Oven dried blotting papers and filter papers were used as test samples and the gains of their weights were constantly monitored and recorded as a function of sorption time. For a mathematical approach, the moisture transport was assumed to be an one-dimensional diffusion in thickness direction through the geometrically symmetric structure of paper. The model was asymptotically simplified with a short-term approximation. It gave us a new insight into the moisture uptake phenomena as a function of square root of sorption time. The fiber-phase moisture diffusivities(FPMD) of paper samples were then determined by correlating the experimental data with the unsteady-state diffusion model obtained. Their values were found to be on the order of magnitude of $10^{-6}-10^{-7}cm^2$/min., which were equivalent to the hypothetical effective diffusion coefficients at the limit of zero porosity. The moisture sorption curve predicted from the model fairly agreed with that obtained from the experiment at some limited initial stages of the moisture uptake process. The FPMD value of paper significantly varied depending upon the current moisture content of paper. The mean FPMD was about 0.7-0.8 times as large as the short-term approximated FPMD.

A Study on Moisture Transport of Artificial Lightweight Concrete (인공경량골재 콘크리트의 수분이동 특성에 관한 연구)

  • Lee, Chang Soo;Choi, Sang Hyun;Park, Jong Hyok;Kim, Young Ook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.373-384
    • /
    • 2009
  • For the first step on the quantitative evaluation of shrinkage reduction and differential shrinkage analysis of lightweight aggregate concrete, this study sets the moisture transport model of concrete by pre-absorbed water of porous lightweight aggregates and measured effective moisture diffusion coefficient, moisture capacity, degree of humidity supply and degree of humidity consumption by water binder ratio and aggregate type. The effective moisture diffusion coefficient in steady state caused by humidity difference between inside and outside of concrete had low value as low water-binder ratio. And in case of same water-binder ratio, effective moisture diffusion of mixtures used normal aggregates were lower than those used lightweight aggregates. To determine moisture store capability of concrete - moisture capacity, moisture contents were measured in 9 humidity conditions. As a result moisture contents of mixtures used lightweight aggregates was higher than mixtures used normal aggregates in all humidity conditions. This study measured lightweight aggregates' degree of humidity supply that applicable to normal atmospheric environment (above RH 50%) and made it quantitatively. Also amount of moisture release was set as a exponential function that represents a clear trend proportion to time and inverse proportion to humidity of the surroundings. As the result of measurement about degree of moisture consumption inside concrete following the internal consumption caused by cement hydration self-drying, it was showed that rapid decrease of humidity, around 10%, at early ages (7~10 days) when water-binder ratio is 0.3 and slow decrease around 5% and 1% when water-binder ratio is 0.4 and 0.5.

Drying characteristics of lotus root under microwave and hot-air combination drying

  • Joe, Sung Yong;So, Jun Hwi;Lee, Seung Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.519-532
    • /
    • 2020
  • Because lotus root has a short shelf life, the quality easily deteriorates. Thus, the harvested lotus roots are processed into a variety of products. Drying is one of the simplest food preservation methods, which can increase food stability. However, the convective drying method takes a long time and requires high energy consumption. Combination drying methods have emerged to overcome the limitations of the convective drying method. This study investigated the drying characteristics of lotus root and determined the optimal drying model of lotus root depending on the microwave and hot-air combination drying conditions. The lotus root slices (5 mm in thickness and 40 mm in diameter) were dried by different drying conditions that were combined with three microwave power levels (50, 100, and 150 W) and two hot air temperatures (50 and 60℃) at a velocity of 5 m·s-1. Eight drying models were tested to evaluate the fit to the experimental drying data, and the effective moisture diffusion (Deff) values of the lotus root slices dried by combination drying were estimated. The combination drying time of the lotus root was significantly reduced with the high air temperature and microwave power. The effective moisture diffusion (Deff) of lotus root was more affected by the air temperature than microwave power intensity. Logarithmic model was most suitable to describe the drying curve of lotus root in the microwave-hot air combination drying method.

Modeling for Drying of Thin Layer of Native Cassava Starch in Tray Dryer

  • Aviara, Ndubisi A.;Igbeka, Joseph C.
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.342-356
    • /
    • 2016
  • Purpose: The drying of a thin layer of native cassava starch in a tray dryer was modeled to establish an equation for predicting the drying behavior under given conditions. Methods: Drying tests were performed using samples of native cassava starch over a temperature range of $40-60^{\circ}C$. We investigated the variation in the drying time, dynamic equilibrium moisture content, drying rate period, critical moisture content, and effective diffusivity of the starch with temperature. The starch diffusion coefficient and drying activation energy were determined. A modification of the model developed by Hii et al. was devised and tested alongside fourteen other models. Results: For starch with an initial moisture content of 82% (db), the drying time and dynamic equilibrium moisture content decreased as the temperature increased. The constant drying rate phase preceded the falling rate phase between $40-55^{\circ}C$. Drying at $60^{\circ}C$ occurred only in the falling rate phase. The critical moisture content was observed in the $40-55^{\circ}C$ range and increased with the temperature. The effective diffusivity of the starch increased as the drying temperature increased from 40 to $60^{\circ}C$. The modified Hii et al. model produced randomized residual plots, the highest $R^2$, and the lowest standard error of estimates. Conclusions: Drying time decreased linearly with an increase in the temperature, while the decrease in the moisture content was linear between $40-55^{\circ}C$. The constant drying rate phase occurred without any period of induction over a temperature range of $40-55^{\circ}C$ prior to the falling rate period, while drying at $60^{\circ}C$ took place only in the falling rate phase. The effective diffusivity had an Arrhenius relationship with the temperature. The modified Hii et al. model proved to be optimum for predicting the drying behavior of the starch in the tray dryer.

Simulation Model for Drying Characteristics of Batch-type Tunnel Dryer (배치식 터널 건조기의 고추 건조 시뮬레이션 모델 연구)

  • 황규준;고학균;홍지향;김종순
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • In this study, experiments were performed for various drying air temperatures, air flow rates tray distance to analyze drying characteristics of batch type tunnel dryer. In comparison of tunnel drying with cabinet drying which is currently used in the farm, the results of drying simulation model of cabinet dryer was used and then the possibility of applying the drying simulation model of cabinet dryer to batch type tunnel dryer was investigated. The results showed that as the drying temperature increased, the drying rte and moisture difference in the direction of air flow increased and as the air flow rate increased, the drying rate increased and moisture differences decreased. In tunnel dryer, drying through bottom of the tray had large effect on drying rate and the effect was more significant when the drying temperature increased. As air flow rate increased, the difference of drying rates between tunnel and cabinet drying increased and drying rate of tunnel of drying was higher. The drying simulation model could estimate moisture content in tunnel more precisely by using modified effective moisture diffusion coefficient for air flow rate.

  • PDF

Modeling for Vacuum Drying Characteristics of Onion Slices

  • Lee, Jun-Ho;Kim, Hui-Jeong
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1293-1297
    • /
    • 2009
  • In this study, drying kinetics of onion slices was examined in a laboratory scale vacuum dryer at an air temperature in a range of $50-70^{\circ}C$. Moisture transfer from onion slices was described by applying the Fick's diffusion model, and the effective diffusivity was calculated. Temperature dependency of the effective diffusivity during drying process obeyed the Arrhenius relationship. Effective diffusivity increased with increasing temperature and the activation energy for the onion slices was estimated to be 16.92 kJ/mol. The experimental drying data were used to fit 9 drying models, and drying rate constants and coefficients of models tested were determined by non-linear regression analysis. Estimations by the page and Two-term exponential models were in good agreement with the experimental data obtained.

A Study on the Preservative Treatment of Wood by Osmose Process (Osmose Process에 의한 목재방부(木材防腐) 처리(處理)에 관(關)한 연구(硏究))

  • Shim, Chong-Supp;Jo, Jae-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.135-151
    • /
    • 1982
  • In order to investigate the effectiveness of Osmose process for the practical treatment of wood this study has been made using water soluble preservatives such as Malenit and chromated zinc chloride. The results obtained in this investigation are as follows: 1. The penetration of Malenit in sapwood has been observed deeper than that of chromated zinc chloride for all species tested in this investigation. 2. The penetration of preservatives applied in soft wood, ie. Pinus densiflora and Larix leptolepis has been observed better results than that of hard wood, i.e., Quercus accutissima and Carpinus laxiflora. 3. The longer stack covering, despite of preservatives applied and size of wood tested, has given better penetration for all species tested, and the fastest diffusion has been occured in 15 days from they day started. Following after 15 days diffusion had gradualy become slower. 4. The length of time needed for effective penetration has taken 45 days for all species tested, reaching twenty millimeters (20mm) in depth in case of Malnit, that means also more than 50% of penetration into sapwood portion. However it has taken 45 days fer Pinus densiflora and Larix leptolepis, reaching fifteen millimeters (15mm) and 60 days for Quercus accutissima and Carpinus laxiflora, reaching same fifteen millimeters in case of chromated zinc chloride, that means also less than 50% (except 50% for Larix) of penetration into sapwood portion. 5. Deeper penetration of preservatives from the wood surface has been observed in the larger wood than the smaller wood for all species tested, although the penetration ratio between the width of sapwood and the length penetrated has been observed smaller in larger wood than smaller wood. 6. The relation between moisture content of wood and the penetration of preservatives into wood tested has shown the linear regression, that is, the more moisture content brought the deeper penetration. 7. Following the result obtained at this investigation osmose process with Malenit applied has indicated as a useable process for the none pressure treatment of wood.

  • PDF

Determination of Hot Air Drying Characteristics of Squash (Cucurbita spp.) Slices

  • Hong, Soon-jung;Lee, Dong Young;Park, Jeong Gil;Mo, Changyeun;Lee, Seung Hyun
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.314-322
    • /
    • 2017
  • Purpose: This study was conducted to investigate the hot air drying characteristics of squash slices depending on the drying conditions (input air velocity, input air temperature, and sample thickness). Methods: The developed drying system was equipped with a controllable air blower and electric finned heater, drying chamber, and ventilation fan. Squash (summer squash called Korean zucchini) samples were cut into slices of two different thicknesses (5 and 10 mm). These were then dried at two different input air temperatures (60 and $70^{\circ}C$) and air velocities (5 and 7 m/s). Six well-known drying models were tested to describe the experimental drying data. A non-linear regression analysis was applied to determine model constants and statistical indices such as the coefficient of determination ($R^2$), reduced chi-square (${\chi}^2$), and root mean square error (RMSE). In addition, the effective moisture diffusivity ($D_{eff}$) was estimated based on the curve of ln(MR) versus drying time. Results: The results clearly showed that drying time decreased with an increase in input air temperature. Slice thickness also affected the drying time. Air velocity had a greater influence on drying time at $70^{\circ}C$ than at $60^{\circ}C$ for both thicknesses. All drying models accurately described the drying curve of squash slices regardless of slice thickness and drying conditions; the Modified Henderson and Pabis model had the best performance with the highest R2 and the lowest RMSE values. The effective moisture diffusivity ($D_{eff}$) changes, obtained from Fick's diffusion method, were between $1.67{\times}10^{-10}$ and $7.01{\times}10^{-10}m^2/s$. The moisture diffusivity was increased with an increase in input air temperature, velocity, and thickness. Conclusions: The drying time of squash slices varied depending on input temperature, velocity, and thickness of slices. The further study is necessary to figure out optimal drying condition for squash slices with retaining its original quality.

Investigation of Drying Kinetics and Color Characteristics of White Radish Strips under Microwave Drying

  • Lee, Dongyoung;So, Jung Duk;Jung, Hyun Mo;Mo, Changyeun;Lee, Seung Hyun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.237-246
    • /
    • 2018
  • Purpose: This study (a) investigated the effect of microwave power intensity and sample thickness on microwave drying characteristics of radish strips, and (b) determined the best-fit drying model for describing experimental drying data, effective moisture diffusivity ($D_{eff}$), and activation energy ($E_a$) for all drying conditions. Methods: A domestic microwave oven was modified for microwave drying and equipped with a small fan installed on the left upper side for removing water vapor during the drying process. Radishes were cut into two fixed-size strip shapes (6 and 9 mm in thickness). For drying experiments, the applied microwave power intensities ranged from 180 to 630 W at intervals of 90 W. Six drying models were evaluated to delineate the experimental drying curves of both radish strip samples. The effective moisture diffusivity ($D_{eff}$) was determined from Fick's diffusion method, and the Arrhenius equation was applied to calculate the activation energy ($E_a$). Results: The drying time was profoundly decreased as the microwave power intensity was increased regardless of the thickness of the radish strips; however, the drying rate of thicker strips was faster than that of the thinner strips up to a certain moisture content of the strip samples. The majority of the applied drying models were suitable to describe the drying characteristics of the radish strips for all drying conditions. Among the drying models, based on the model indices, the best model was the Page model. The range of estimated $D_{eff}$ for both strip samples was from $2.907{\times}10^{-9}$ to $1.215{\times}10^{-8}m^2/s$. $E_a$ for the 6- and 9-mm strips was 3.537 and 3.179 W/g, respectively. Conclusions: The microwave drying characteristics varied depending on the microwave power intensity and the thickness of the strips. In order to produce high-quality dried radish strips, the microwave power intensity should be lower than 180 W.