• 제목/요약/키워드: effective grain size

검색결과 239건 처리시간 0.03초

Characteristics of Spectral Reflectance in Tidal Flats

  • Ryu, Joo-Hyung;Na, Young-Ho;Choi, Jong-Kook;Won, Joong-Sun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.734-738
    • /
    • 2002
  • We present spectral characteristics of tidal flat sediments and algal mat that were tested in the Gomso and Saemangum tidal flats, Korea. The objective of this study is to investigate the spectral reflectance and the radar scattering modeling in the tidal flats. Ground truth data obtained in the tidal flats include grain size, soil moisture content and its variation with time, surface roughness, chlorophyll, ground leveling, and field spectral reflectance measurement. The concept of an effective exposed area (EEA) is introduced to accommodate the effect of remnant surface water, and it seriously affects the reflection of short wavelength infrared and microwave. The nin size of 0.0625 mm has been normally used as a critical size of mud and sand discrimination. But we propose here that 0.25 mm is more practical grain size criterion to discriminate by remote sensing. Algal mat is the primary product in tidal flats, and it is found to be very important to understand spectral characteristics for tidal flat remote sensing. We have also conducted radar scattering modeling, and showed L-band HV-polarization would be the most effective combination.

  • PDF

$UO_2$ 소결체의 특성 및 미세구조에 미치는 첨가제의 영향 (Effects of Additives on the Characteristics and Microstructure of $UO_2$ Pellet)

  • 유호식;이신영;이승재;강권호;김형수
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.660-664
    • /
    • 2000
  • Effect of various kinds of additive such as AlOOH, Al(OH)3, Al2Si2O5(OH)4, Nb2O5, TiO2 and MgO on the properties and microstructures of UO2 pellet has been examined. All the tested dopants had played a role to reduce sintered density and open porosity. It was revealed that the addition of TiO2 made pellet more stable thermally. UO2 pellet doped with 0.2wt% TiO2 was swelled rather than densified after annealing for 24 hrs at 1$700^{\circ}C$. It was attributed to large pore with spherical shape. Titinia and silicon coexisted with Al element were more effective to increase grain size than other additives. It could be also revealed that the formation of liquid phase was the main cause of grain growth.

  • PDF

API X80 라인파이프강의 미세조직과 기계적 특성에 미치는 냉각조건의 영향 (Effect of Cooling Conditions on Microstructures and Mechanical Properties in API X80 Linepipe Steels)

  • 한승엽;신상용;이성학;배진호;김기수
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.523-532
    • /
    • 2009
  • In this study, four API X80 linepipe steel specimens were fabricated with varying cooling rates and finish cooling temperatures, and their microstructures and crystallographic orientations were analyzed to investigate the effects of cooling conditions on their tensile and Charpy impact properties. All the specimens consisted of acicular ferrite, granular bainite, and secondary phases such as martensite and martensiteaustenite constituent. The volume fraction of secondary phases increased with increasing cooling rate, and the higher finish cooling temperature resulted in the reduction in volume fraction and grain size of secondary phases. According to the crystallographic orientation analysis data, the effective grain size and unit crack path decreased as fine acicular ferrites having a large amount of high-angle grain boundaries were homogeneously formed, thereby leading to the improvement of Charpy impact properties. The specimen fabricated with the higher cooling rate and lower finish cooling temperature had the highest upper shelf energy and the lowest energy transition temperature because it contained a large amount of fine secondary phases homogeneously distributed inside fine acicular ferrites, while its tensile properties well maintained.

마그네트론 스퍼터링법으로 증착한 Au 박막의 전기전도특성에 미치는 열처리 온도와 Ta 삽입층의 영향 (The effect of annealing temperature and Ta layer on the electric conductivity of Au thin film deposited by the magnetron sputtering)

  • 최혁철;유천열
    • 한국진공학회지
    • /
    • 제16권6호
    • /
    • pp.433-438
    • /
    • 2007
  • 열처리 온도에 따른 Au 결정립 크기의 변화와 표면 거칠기 및 전기전도도를 연구하기 위해 dc 마그네트론 스퍼터링법을 사용하여 Si(111) 또는 Si(100) 기판위에 Au (30nm) 와 Ta (5 nm)/Au (30 nm) 를 증착하였다. 열처리 온도가 증가함에 따라 시료의결정립 크기가 증가하였고, 박막 표면 거칠기 또한 증가함을 확인하였다. Si/Au보다Si/Ta/Au구조에서 결정립 크기가 증가하였고 표면거칠기는 감소되었으며 Si(111)기판보다 Si(100) 기판위의 Ta/Au구조에서 전기 저항이 감소되었다. Si(100)/Au구조에 5 nm 두께의 Ta의 buffer layer를 삽입하여 표면 거칠기 정도를 낮춤과 동시에 열처리 온도를 적절히 조절하여 결정립 크기를 증가시킴으로서 전도성이우수한 양질의 Au 박막을 얻을 수 있었다.

질화규소 세라믹스의 미세조직 형성에 미치는 Seed 첨가의 영향 (Effect of Seeding on Microstructural Development of Silicon Nitride Ceramics)

  • 이창주
    • 한국분말재료학회지
    • /
    • 제5권2호
    • /
    • pp.133-138
    • /
    • 1998
  • The effect of $\beta$-$Si_3N_4$ seeding on microstructural development of silicon nitride based materials has been investigated. In particular, to observe more distinctly the abnormal grain growth in pressureless sintering, fine $\alpha$-$Si_3N_4$(mean particle size: 0.26 ${\mu}m$) powder classified by sedimentation method was used. It was possible to prepare silicon nitride with abnormally grown grains under low nitrogen pressure of 1 atm thanks to the heterogeneous nucleation on $Si_3N_4$ seed particles. The size and morphology of silicon nitride grains were strongly influenced by the presence of $\beta$-$Si_3N_4$ seed and overall chemical composition. For specimens with initially low $\beta$-content, the large grains grew without a significant impingement by other large grains. On the contrary, for specimens with initially high $\beta$-content, steric hindrance was effective. The resulting microstructure was less inhomogeneous and characterized by unimodal grain size distribution.

  • PDF

SnO$_2$가 첨가된 ZnO의 전기적성질 (Electrical Properties of TiO$_2$added ZnO)

  • 최우성;박춘배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.221-223
    • /
    • 1995
  • The electrical conductivity of SnO$_2$added ZnO was investigated using the DC and AC methods. The electrical conductivity of SnO$_2$added ZnO was decreased with increasing the concentration of SnO$_2$. The cal쳐lated effective dielectric constants of 3 mol%, 5 mo1%, and 7 mol% are ~7, ~13, and ~120, respectively. The factor of the decrease for the electrical conductivity seems to be the increase of the resistance of grain decreasing the size of grain.

압력용기용 A516 강의 미세조직에 미치는 탄소 당량과 냉각 속도의 영향 (Effect of Carbon Equivalent and Cooling Rate on Microstructure in A516 Steels for Pressure Vessel)

  • 이현욱;강의구;김민수;신상용
    • 한국재료학회지
    • /
    • 제29권8호
    • /
    • pp.511-518
    • /
    • 2019
  • In this study, the effect of carbon equivalent and cooling rate on microstructure and hardness of A516 steels for pressure vessel is investigated. Six kinds of specimens are fabricated by varying carbon equivalent and cooling rate, and their microstructures and hardness levels are analyzed. Specimens with low carbon equivalent consist of ferrite and pearlite. As the cooling rate increases, the size of pearlite decreases slightly. The specimens with high carbon equivalent and rapid cooling rates of 10 and $20^{\circ}C/s$ consist of not only ferrite and pearlite but also bainite structure, such as granular bainite, acicular ferrite, and bainite ferrite. As the cooling rate increases, the volume fractions of bainite structure increase and the effective grain size decreases. The effective grain sizes of granular bainite, acicular ferrite, and bainitic ferrite are ~20, ~5, and ${\sim}10{{\mu}m$, respectively. In the specimens with bainite structure, the volume fractions of acicular ferrite and bainitic ferrite, with small effective grains, increase as cooling rate increases, and so the hardness increases significantly.

겹치기 마찰교반접합된 Inconel 600/SS 400 합금의 미세조직과 기계적 특성 평가 (Evaluation of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Inconel 600/SS 400)

  • 송국현
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.123-129
    • /
    • 2012
  • The microstructures and mechanical properties of friction stir welded lap joints of Inconel 600 and SS 400 were evaluated; friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. Electron back-scattering diffraction and transmission electron microscopy were introduced to analyze the grain boundary characteristics and the precipitates, respectively. Application of friction stir welding was notably effective at reducing the grain size of the stir zone. As a result, the reduced average grain size of Inconel 600 ranged from $20{\mu}m$ in the base material to $8.5{\mu}m$ in the stir zone. The joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks, and MC carbides with a size of around 50 nm were partially formed at the Inconel 600 area of lap joint interface. However, the intermetallic compounds that lead to mechanical property degradation of the welds were not formed at the joint interface. Also, a hook, along the Inconel 600 alloy from SS 400, was formed at the advancing side, which directly brought about an increase in the peel strength. In this study, we systematically discussed the evolution of microstructures and mechanical properties of the friction stir lap joint between Inconel 600 and SS 400.

수분사법으로 제조된 순철 분말의 고압비틀림 성형 공정에 의한 치밀화 및 나노결정화 (Densification and Nanocrystallization of Water-Atomized Pure Iron Powder Using High Pressure Torsion)

  • 윤은유;이동준;김하늘;강희수;이언식;김형섭
    • 한국분말재료학회지
    • /
    • 제18권5호
    • /
    • pp.411-416
    • /
    • 2011
  • In this study, powder metallurgy and severe plastic deformation by high-pressure torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. Water-atomized pure iron powders were consolidated to disc-shaped samples at room temperature using HPT of 10 GPa up to 3 turns. The resulting microstructural size decreases with increasing strain and reaches a steady-state with nanocrystalline (down to ~250 nm in average grain size) structure. The water-atomized iron powders were deformed plastically as well as fully densified, as high as 99% of relative density by high pressure, resulting in effective grain size refinements and enhanced microhardness values.

용탕단조 마그네슘합금의 조직과 기계적 성질에 미치는 Zn과 Zr의 영향 (Effect of Zinc and Zirconium on Microstructure and Mechanical Property in Squeeze Cast Magnesium Alloy)

  • 최영두;최정철;장시영
    • 한국주조공학회지
    • /
    • 제19권5호
    • /
    • pp.403-409
    • /
    • 1999
  • Mg-Zn-Zr ternary alloys containing 6wt% Zn and (0, 0.4, 0.6)wt% Zr, which is added for grain refinement, can be cast into complex shape by squeeze casting. The influence of Zn and Zr as additional elements on microstructure and mechanical characteristics is investigated by OM, SEM, WDX, XRD and microvickers hardness measurement. The microstructure of Mg-Zn-Zr alloys consists of primary ${\alpha}-Mg$ and MgZn eutectic compound between dendrites. The grain size is decreased from $136{\mu}m$ to $97\;{\mu}m$ by Zr addition, resulting in that the hardness is increased from 42Hv to 59Hv. Furthermore, the grain size is changed to $83{\beta}$ and the hardness is increased to 65Hv by additional infiltration pressure. These results indicate that the Zr addition and additional infiltration pressure are effective for grain refinement acting as an important factor to increase the hardness. The increment in hardness by the Zr addition is slightly larger than that by the additional infiltration pressure.

  • PDF