• Title/Summary/Keyword: effective grain size

Search Result 240, Processing Time 0.024 seconds

Improved Mechanical Properties of Cross Roll Rolled Ni-Cr Alloy (교차롤압연된 Ni-Cr 합금의 기계적 특성 발달)

  • Song, Kuk-Hyun;Kim, Dae-Keun;Son, Hyun-Taek;Lee, Hae-Jin;Kim, Han-Sol;Kim, Won-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.556-562
    • /
    • 2011
  • We carried out this study to evaluate the grain refining in and the mechanical properties of alloys that undergo severe plastic deformation (SPD). Conventional rolling (CR) and cross-roll rolling (CRR) as SPD methods were used with Ni-20Cr alloy as the experimental material. The materials were cold rolled to a thickness reduction of 90% and subsequently annealed at $700^{\circ}C$ for 30 min to obtain a fully recrystallized microstructure. For the annealed materials after the cold rolling, electron back-scattered diffraction (EBSD) analysis was carried out to investigate the grain boundary characteristic distributions (GBCDs). The CRR process was more effective when used to develop the grain refinement relative to the CR process; as a result, the grain size was refined from $70{\mu}m$ in the initial material to $4.2{\mu}m$ (CR) and $2.4{\mu}m$ (CRR). These grain refinements have a direct effect on improving the mechanical properties; in this case, the microhardness, yield and tensile strength showed significant increases compared to the initial material. In particular, the CRR-processed material showed more effective values relative to the CR-processed materials. The different texture distributions in the CR (001//ND) and CRR (111//ND) were likely the cause of the increase in the mechanical properties. These findings suggest that CRR can result in materials with a smaller grain size, improved texture development and improved mechanical properties after recrystallization by a subsequent annealing process.

A Study on the Shelf Sediments from Korea Strait through Decomposition of Size Curves into Normal Components (입도곡선의 정규성분 분해에 의한 대한해협의 대륙붕 퇴적물 연구)

  • KONG Young Sae;KIM Hee Joon;MIN Geon Hong;LEE Chi Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.386-392
    • /
    • 1996
  • A numerical method based on genetic algorithms was introduced to characterize the grain-size distribution more effectively. This technique was proved significant particularly for multimodal size distributions, as was verified for samples from Korea Strait continental shelf. Sediment samples collected from the Korea Strait continental shelf revealed that $96\%$ of the grain-size distributions were multimodal. Therefore, the use of grain-size parameters was not the ideal method. As an alternative method, the decomposition of sue curves into elementary normal component curves was used. Means and standard deviations of 593 decomposed normal components were calculated by a numerical method from 268 size curves of Korea Strait sediments. The mean values of decomposed normal components showed peaks at $1\~3\phi\;and\;7\~9\phi$ size classes. The plot of mean and standard deviation values of the coarse fraction normal components on the map showed a characteristic areal distribution. The characteristic distribution was found to derive from underlying Pleistocene sediment on the basis of sea bottom geologic distribution of the area. The method of decomposition into normal components was found to be more effective than the analysis using traditional grain-size parameters in investigation of multimodal size distribution of Korea Strait shelf sediment.

  • PDF

Investigation on the Size Effects of Polycrystalline Metallic Materials in Microscale Deformation Processes (미세성형 공정에서 다결정 금속재료의 크기효과에 관한 연구)

  • Kim, Hong-Seok;Lee, Yong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1463-1470
    • /
    • 2010
  • Microforming, which exploits the advantages of metal forming technology, appears very promising in manufacturing microparts since it enables the production of parts using various materials at a high production rate, it has high material utilization efficiency, and it facilitates the production of parts with excellent mechanical properties. However, the conventional macroscale forming process cannot be simply scaled down to the micro-scale process on the basis of the extensive results and know-how on the macroscale process. This is because a so-called "size effect" occurs as the part size decreases to the microscale. In this paper, we attempt to develop an effective analytical and experimental modeling technique for explaining the effects of the grain size and the specimen size on the behavior of metals in microscale deformation processes. Copper sheet specimens of different thicknesses were prepared and heat-treated to obtain various grain sizes for the experiments. Tensile tests were conducted to investigate the influence of specimen thickness and grain size on the flow stress of the material. In addition, an analytical model was developed on the basis of phenomenological experimental findings to quantify the effects of the grain size and the specimen size on the flow stress of the material in microscale and macroscale forming.

The Effect of Pressure on the Abnormal Grain Growth in Alumina (알루미나의 비정상 입자성장에 미치는 압력의 영향)

  • Park, Hoon;Park, Sang-Yeup
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.617-624
    • /
    • 2000
  • Abnormal grain growth in alumina was investigated during sinter-HIP process for better understanding of pressure effect on microstructural development. Abnormal grain growth of monolithic alumina was observed near surface region rather than interior region of specimen. Finite element analysis was used to estimate the pressure distribution developed in the specimen. Pressure distribution analysis was in good agreement with grain size distributjion in the specimen. The results of finite element analysis provided that abnormal grain growth monolithic alumina was resulted from the inhomogeneous pressure distribution in the specimen. MgO addition in alumina was effective for the suppression of abnormal grain growth in alumina under inhomogeneous pressure distribution during sinter-HIP process.

  • PDF

Effect of Ti, B, Zr Elements on Grain Refinement and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy (주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 결정립 미세화와 주조특성에 미치는 Ti, B, Zr 첨가원소의 영향)

  • Kim, Heon-Joo;Park, Su-Min
    • Journal of Korea Foundry Society
    • /
    • v.35 no.5
    • /
    • pp.120-127
    • /
    • 2015
  • The effects of Ti, B and Zr on grain refinement and castability were investigated in Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurement of cooling curve and micro-structure observation were performed to analyze the effects of the addition of minor elements Ti, B and Zr during solidification. The prominence of effect on grain refinement was in increasing order for Ti, Zr and B element. Fine grain size and an increase of the crystallization temperature for ${\alpha}$-Al solution were evident as the amount of addition elements increased in this study. Addition of 0.15wt% Ti was most effective for grain refinement, and the resulting grain size of ${\alpha}$-Al solution for shell mold and steel mold were $72.3{\mu}m$ and $23.5{\mu}m$, respectively. Fluidity and shrinkage tests were perform to evaluate the castability of the alloy. Maximum fluidity length and minimum ratio of micro shrinkage were recorded for 0.15wt% Ti addition due to the effect of the finest grain size.

Effects of Grain Size on the Fatigue Properties in Cold-Expanded Austenitic HNSs

  • Shin, Jong-Ho;Kim, Young-Deak;Lee, Jong-Wook
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1412-1421
    • /
    • 2018
  • Cold-expanded austenitic high nitrogen steel (HNS) was subjected to investigate the effects of grain size on the stress-controlled high cycle fatigue (HCF) as well as the strain-controlled low cycle fatigue (LCF) properties. The austenitic HNSs with two different grain sizes (160 and $292{\mu}m$) were fabricated by the different hot forging strain. The fine-grained (FG) specimen exhibited longer LCF life and higher HCF limit than those of the coarse-grained (CG) specimen. Fatigue crack growth testing showed that crack propagation rate in the FG specimen was the same as that in the CG specimen, implying that crack propagation rate did not affect the discrepancy of LCF life and HCF limit between two cold-expanded HNSs. Therefore, it was estimated that superior LCF and HCF properties in the FG specimen resulted from the retardation of the fatigue crack initiation as compared with the CG specimen. Transmission electron microscopy showed that the effective grain size including twin boundaries are much finer in the FG specimen than that in the CG specimen, which can give favorable contributions to strengthening.

The evaluation of fracture characteristics and the analysis of stress distribution of ferromagnetic materials by Barkhausen noise method (자기적 비파괴 방법으로서의 Barkhausen Noise를 이용한 강자성체의 파괴인성 및 응력분포해석)

  • Kim, Dong-Won;Kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1864-1866
    • /
    • 1999
  • The magnetic nondestructive test can be applied to evaluate the magnetic material characteristics and the fracture properties through the internal defects of SA-508 used in the pressure vessels of the nuclear power plants as the direct and accurate in-situ testing methods. The fracture toughness, yield strength and the stress distribution around the defects in the surface and sub-surface of magnetic materials can be directly estimated by Bark-hausen noise(BN) methods as NDT. The testing process of SA-508 by Barkhausen noise method was advanced by controlling the austenizing peak temperature and the time of maintenance at a constant austenizing peak temperature, therefore causing the variation of fracture toughness. Through above process. we can evaluate the variations of effective grain size and the correlation of effective grain size and FATT at each situation. And the stress distribution around the defects can be quantified nondestructively through Barkhausen method.

  • PDF

Integration of Kriging Algorithm and Remote Sensing Data and Uncertainty Analysis for Environmental Thematic Mapping: A Case Study of Sediment Grain Size Mapping (지표환경 주제도 작성을 위한 크리깅 기법과 원격탐사 자료의 통합 및 불확실성 분석 -입도분포지도 사례 연구-)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.395-409
    • /
    • 2009
  • The objective of this paper is to illustrate that kriging can provide an effective framework both for integrating remote sensing data and for uncertainty modeling through a case study of sediment grain size mapping with remote sensing data. Landsat TM data which show reasonable relationships with grain size values are used as secondary information for sediment grain size mapping near the eastern part of Anmyeondo and Cheonsuman bay. The case study results showed that uncertainty attached to prediction at unsampled locations was significantly reduced by integrating remote sensing data through the analysis of conditional variance from conditional cumulative distribution functions. It is expected that the kriging-based approach presented in this paper would be efficient integration and analysis methodologies for any environmental thematic mapping using secondary information as well as sediment grain size mapping.

Effects of Grain Refining Elements on the Mechanical Properties and Mold Filling Ability of AZ91D Alloy (AZ91D 합금의 기계적 성질 및 금형충전성에 미치는 결정립 미세화 원소의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.79-82
    • /
    • 2011
  • Various grain refining alloying elements such as Sr, TiB, and Ca were added to AZ91D and their effects on the mechanical properties and mold filling ability were investigated. The average grain sizes of those alloys were significantly reduced by the small amounts of the alloying elements. Ca addition was the most remarkably effective in reducing the grain size, however it was found to deteriorate the mold filling ability and tensile properties. TiB addition was observed to be the most efficient for both grain refinement and mold filling.

Effects of Y2O3 and Al2O3 Addition on the Properties of Hot Pressed AlN Ceramics (AlN 세라믹의 hot pressing에 사용되는 Y2O3 및 Al2O3 소결조제의 효과)

  • Kong, Man-Sik;Hong, Hyun-Seon;Lee, Sung-Kyu;Seo, Min-Hye;Jung, Hang-Chul
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.560-566
    • /
    • 2007
  • AlN plates were fabricated by hot pressing at $1700-1900^{\circ}C$ using yttria and alumina (3 and $10\;{\mu}m$ particle size) powders as additives and characterized: density, thermal conductivity, transverse rupture strength, and grain size measurement by SEM and EDS. Density values of $3.31-3.34\;g/cm^3$ are largely attributed to hot pressing of powder mixtures in carbon mold under $N_2$ atmosphere which caused effective degree of oxygen removal from yttrium-aluminate phase expected to form at $1100^{\circ}C$. The grain size of hot pressed AlN was almost homogeneous, with size approximately from 3.2 to $4.0\;{\mu}m$ after hot pressing. $Al_2O_3$ powder of $3\;{\mu}m$ particle size resulted in better transverse rupture strength and finer grain size compared to $10\;{\mu}m$ $Al_2O_3$ powder. The thermal conductivity of AlN ranged between $83-92.7\;W/m{\cdot}K$ and decreased with $Al_2O_3$ addition. Fine grain size is preferred for better mechanical properties and thermal conductivity.