• Title/Summary/Keyword: effective grain size

Search Result 240, Processing Time 0.033 seconds

Temporal Variations in the Sedimentation Rate and Benthic Environment of Intertidal Surface Sediments around Byeonsan Peninsula, Korea (변산반도 조간대 표층 퇴적물의 퇴적률 및 저서환경 변화)

  • Jung, Rae-Hong;Hwang, Dong-Woon;Kim, Young-Gil;Koh, Byoung-Seol;Song, Jae-Hee;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • To understand temporal variations in geochemical characteristics of intertidal surface sediments around Byeonsan Peninsula (in the middle of the western coast, Korea) after the construction of Saemanguem dyke, the sedimentation rate and various geochemical parameters, including mean grain size (Mz), water content (WC), ignition loss (IL), chemical oxygen demand (COD), and acid volatile sulfide (AVS), were measured along four transects (A.D lines) at monthly intervals from February 2008 to March 2009. The average monthly sedimentation rate ranged from -5.3 to 3.8 mm/month (mean $-0.8{\pm}2.7\;mm$/month), which showed an erosion-dominated environment in the lower part of the intertidal zone. In addition, surface sediments were eroded in summer and autumn, but were deposited in spring and winter. The Mz of surface sediments ranged from -0.8 to $3.4{\varnothing}$ (mean $2.8{\pm}0.5{\varnothing}$), indicating that the surface sediments consist of coarser sediments (sand and slightly gravelly sand). The Mz of surface sediments did not show large monthly and/or seasonal variations, although the sedimentation rates of surface sediment showed large seasonal variation. This may be due to lateral shifting and effective dispersion of surface sediments by wind, tide, and longshore current. The concentrations of IL and COD in the surface sediments ranged from 0.2 to 2.9% (mean $1.4{\pm}0.4%$) and from 0.2 to $18.5\;mgO_2$/g-dry (mean $3.9{\pm}3.4\;mgO_2$/g-dry), respectively, which were slightly higher in spring than in the other seasons. This may be related to spring blooms of phytoplankton in seawater and/or benthic microalgae in surface sediments. On the other hand, no AVS concentrations were detected in surface sediments at any of the sampling stations during the study period.

A Study on Self-Hardening Characteristics of Coal Ash by Mixing Ratio of Fly Ash and Bottom Ash (비회와 저회의 배합비에 따른 석탄회의 자경성에 관한 연구)

  • Shin, Woonggi;Lim, Daesung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.85-91
    • /
    • 2010
  • As enormous construction projects of land development are carried out around Korea, useful construction materials are needed to perform the construction projects. However, there are no more enough of fill and reclamation materials in our country. That is why the coal ash is expected to be utilized as an alternative material. Since the coal ash has the characteristics of a pozzolan and a selfhardening material, it is adjudged that coal ash has a great possibility to be used as a fill and reclamation material. In this study, grain size analysis, Atterberg limit test, and specific gravity test were performed to examine the physical characteristics of the coal ash about a self-hardening material before utilizing the coal ash in the construction. Compaction test, unconfined compression test, direct shear test, and flexible wall permeability test were conducted to investigate the engineering characteristics according to mixture ratios of fly ash and bottom ash. As a result of the tests, it was confirmed that the mixing ratio 1:1 of fly ash and bottom ash is the most effective to use as a fill and reclamation material. If the mixture of coal ash is used as a backfill material with light weight around structure, it is expected to play a significant role in reducing earth pressure on the back of the structure. As the age of the mixture of coal ash goes by, it intends to decrease the coefficient of permeability. As described above, the coal ash should be considered as an alternative material of fill and reclamation materials since the result of the tests indicates that the coal ash is suitable to a useful material on the construction design.

Capping Intercrystalline Defects of Polycrystalline UiO-66 Membranes by Polydimethylsiloxane Coating (폴리다이메틸실록산 코팅을 통한 다결정성 UiO-66 분리막의 비선택적 결정립계 결함 캡핑)

  • Ik Ji Kim;Hyuk Taek Kwon
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.71-75
    • /
    • 2023
  • In general, the presence of non-selective intercrystalline (grain boundary) defects in polycrystalline metal-organic framework (MOF) or zeolite membranes, which are known to be ca. 1 nm in size, causes lower membrane performance (selectivity) than the intrinsically expected. In this study we show that applying a thin polymeric coating of polydimethylsiloxane (PDMS) on a polycrystalline MOF membrane is effective to cap the non-selective intercrystalline defects and therefore improve membrane performance. To demonstrate the concept, first, polycrystalline UiO-66, one of Zr-based MOFs, membranes were prepared by an in-situ solvothermal growth. By controlling membrane growth condition with respect to growth temperature, we were able to obtain polycrystalline UiO-66 membranes at 150 ℃ with intercrystalline defects of which the quantity is not significant, so it can be plugged by the suggested PDMS deposition. Second, their performances were compared before and after the PDMS deposition. As expected, the PDMS deposition ended up with a noticeable increase in CO2/N2 ideal selectivity from 6 to 14, indicating successful intercrystalline defect plugging. However, the enhancement in CO2/N2 selectivity was accompanied by a significant reduction in CO2 permeance from 5700 to 33 GPU because the PDMS deposition not only plugs defects but also forms a continuous coating on membrane surface, adding an additional transport resistance.

Tensile Strength and Surface Characteristics of Mn Steel with Ti Addition (Ti을 첨가한 Mn 강의 인장특성과 표면특성)

  • Ryung-kyung Hwang;Sung-Tae Yoon;Gyun-Yung Lee;Sun-Joong Hwang
    • Journal of Korea Foundry Society
    • /
    • v.44 no.1
    • /
    • pp.9-15
    • /
    • 2024
  • In this study, in order to improve the lifespan of parts made of manganese steel, manganese steel was cast by varying the amount of Ti added to the steel. In order to confirm the characteristics of the cast material, processing characteristics including tensile and surface characteristics and bearing ratio were investigated. It was confirmed that when the amount of Ti added to high manganese steel exceeds 0.5%, the strength of the alloy is improved due to grain refinement, and fine carbides are formed inside the steel. This results in increased resistance to surface wear compared to the alloy with only Mn added. There was no significant difference in the increase in tensile strength as the Ti content in manganese steel was increased. However, inclusion of Ti showed a small but greater effect on wear resistance compared to Mn, and the size and the distribution of carbides become coarse depending on the Ti content. and was evenly distributed. It was confirmed that the strength and surface properties of manganese steel can be improved by the addition of Ti to improve the lifespan of parts made with this steel. It was found that Ti is effective in developing materials with excellent wear resistance due to refinement of dendrite crystal grains. In the samples where Ti was added, the carbide appears to increase the resistance to surface roughness, and due to the nature of Mn steel, surface hardening begins to occur, which appears to extend the life.

Characterization of Sedimentation and pH Neutralization as Pretreatment of Acid Contaminated Water (산 오염수 전처리용 침전 및 중화 특성)

  • Im, Jongdo;Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.33-40
    • /
    • 2022
  • Sedimentation and pH neutralization has been investigated as preteatment of acid contaminate water. The settling and neutralizing process derive more effective degradation efficiency as the pre-treatment process before the removal process of adsorption, volatile, biodegradation, or oxidation. Settling velocity, uniformity coefficient, coefficient of curvature, and grain size index can define in the sedimentation process for characteristics of the soil. The stainless steel sieve has been used to separate each particle size of the dry soil by assembling in order of 4, 10, 20, 40, 80, 100, and 200 mesh sizes. The soil from Gamcheon Port in Busan drops upper side of the sieve and shakes back and forth to separate each different size of the particle. The 1L of Imhoff cone and 200 mL of the mass cylinder were used as settling tanks to calculate settling velocity. Stokes' equation was used to figure out the average density of dry soil with a value from settling velocity. In the results, the average particle density and lowest settling velocity were 1.93 g/cm3 and 0.11 cm/s, respectively. These values can detect the range of settling points of sediment to prevent chemical accidents. In pH neutralization, the initial pH of 2, 3, 4, and 5 of nitric acid and sulfuric acid are used as an acid solution; 0.1, 0.01, and 0.001 M of sodium hydroxide and calcium hydroxide are used as a base solution. The main goal of this experiment is to figure out the volume percentage of the acid solution becomes pH 7. The concentration of 0.001 M of base solution exceeds all the conditions, 0.01 M exceeds partially, and 0.1 M does not exceed 5 v/v% except pH 2. Calcium hydroxide present less volume than sodium hydroxide at pH neutralization both sulfuric and nitric acid.

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

Effects of Post Individualities on Treatability of Small Diameter Japanese Larch (Larix Leptolepis) with ACQ and CCA (낙엽송 원주상 소경목의 원목성상과 방부 처리성)

  • Kim, Yeong-Suk;Hong, Soon-Il;Yun, Jeong-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.52-60
    • /
    • 2006
  • This study investigated how wood properties (i.e., annual rings, sapwood, heartwood, and cracks) might affect preservative treatment in Japanese larch (Larix leptolepis) round-wood product. We specially focused on small-diameter (~10 cm diameter) wood that is commercially sold in market. Among 100 wood samples, the groups of sample with 13~16, 17~20 annual rings represented 33 and 27 in each frequency, while 2~3 and 4~5 mm annual ring width accounted for 72 and 68 in frequency. More than a half (54%) of wood samples contained a mix of heartwood and sapwood in its surface. The rest (46%) had only heartwood exposed in the wood surface. A wide range of checks were showed in the wood samples, but the highest frequency was observed in samples with 1~6 surface (1~14 mm in size) checks and 1~4 end-grain (8~14 mm in size) checks in each round-wood sample. Pressure treatment resulted in a wide range of penetration of ACQ (Alkaline Copper Quat) into the wood, showing $4.3{\pm}4.19mm$ penetration in the wood samples contained a mix of heartwood and sapwood in its surface. However preservative treatment was much less effective for the heartwood only wood samples, ranging average 1.3 mm with ACQ and 1.1 mm with CCA (Chromated Copper Arsenate). These penetration results shown in heartwood samples did not meet the penetration standard that is required for H3 by the Korean Forest Service in relation to wood preservation treatment. These low penetration results were not significantly improved even if we incised wood samples to improve treatment effect, showing only small increase of 0.7 mm with ACQ and 0.6 mm with CCA. When preservative treatment was tested with heartwood, penetration of preservatives decrease with increase of annual rings per a cross-section area (r=0.5345). We also found that the length and number of check had no effect on preservative treatment, showing r=0.1301 and r=0.1802, respectively.

An Experimental Study on Flocculation and Settling of Fine-grained Suspended Sediments (부유물질의 응접작용 및 침전특성에 관한 실험적 연구)

  • Chu, Yong-Shik;Park, Yong-Ahn;Lee, Hee-Jun;Park, Kwang-Soon;Kweon, Su-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.40-49
    • /
    • 1999
  • A laboratory flume experiment, using turbulence-generating acryl tank and natural sediments, was conducted to investigate the effects of salinity, concentration of suspended sediment, turbulence and clay minerals on the flocculation and settling of fine-grained suspended sediments. While experiments were run, a sequence of water samples were taken near the bottom of the tank to analyze the variations of size distribution and relative contents of clay minerals. The results of the salinity experiment indicate that median settling velocity ($W_{50}$) increases linearly with salinity. Different settling processes of suspended sediments under variable concentrations appear to be predictable, depending upon the range of the suspension concentration. At concentrations less than 200 mg/l, $W_{50}$ is rarely varied with concentration probably because of the individual--grain settling mode. In the range of 200 to 13,000 mg/l show $W_{50}$ and concentration a good relationship following an empirical formula: $W_{50}=0.45C^{0.44}$. This relationship, however, no longer holds in concentrations exceeding 13,000 mg/l; instead, a more or less reverse one is shown. This result suggests an effect of hindered settling. The turbulence effect is somewhat different from that of concentration. Turbulence accelerates the flocculation and settling susepended sediments at low concentration (200 mg/l), whereas at high concentration turbulence breaks floes down and impedes the settling. Size distribution of suspended sediments sampled near the bottom of the tank tend to be more negatively skewed and leptokurtic in turbulent conditions compared to those in static conditions. The clay mineral analysis from the sequential water samples shows that over time the content of smectite decreases most rapidly with illite remaining concentrated in suspension. This means that smectite, among other clay minerals, plays the most effective role in the flocculation of fine-grained sediment in saline water.

  • PDF

Capping Treatment for the Reduction of Phosphorus Release from Contaminated Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 Capping 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Yun, Sang-Leen;Kim, So-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.438-446
    • /
    • 2006
  • A lab-scale batch test was conducted to develop capping materials to reduce the sediment phosphorus in the stagnant water zone of Gyeongancheon in Paldang Lake. The mean grain size(Mz) of sediment in the investigated area was 7.7 ${\phi}$, which is very fine, and the contents of organic carbon($C_{org}$) was 2.4%, which is very high. For the phosphorous release experiment to select the optimal capping material, sand layer, powder-gypsum($CaSO_4{\cdot}2H_2O$), granule-gypsum, complex layer(gypsum+sand) and the control were compared and evaluated in the 150 L reactor for 45 days. In case of the capping with the sand, it was found that the phosphorous from the sediment could be reduced by around 50%. However, it was found that this caused the reduction of the dissolved oxygen in the water column(by less than 3 mg/L) due to the resuspension of sediment and the organic matter decomposition that comes from the generation of $CH_4$ gas in the 1 cm of the sand layer. Therefore, it is likely that the sand layer has to be thickener in case of the sand capping. Powder-gypsum and granule-Gypsum reduced phosphorous release by more than 80%. However, the concentration of ${SO_4}^{2-}$ in the water column increased, making it difficult to apply it to the drinking water protection zone. We developed Fe-Gypsum and $SiO_2$-gypsum materials to reduce the solubility of ${SO_4}^{2-}$. Powder-Gypsum creates the interception film that does not have any aperture on the sediment layer when it is combined with the water. However phosphorous release caused by the generation of $CH_4$ gas may happen at a time when the gypsum layer has the crack. Capping through the complex layer(granule-Gypsum+sand(1 cm)) found to be suitable for the drinking water protection zone because it was effective to prevent phosphorus release. Moreover, this leads to the lower solubility from the concentration of ${SO_4}^{2-}$ into the water column than the powder-Gypsum and granule-Gypsum. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment can reduce the progress of methanogensis because fast early diagenesis and sufficient supply of ${SO_4}^{2-}$ to the sediment, stimulate the SRB(sulfate reducing bacteria) highly.

Study on the Technological System of the Cooperative Cultivation of Paddy Rice in Korea (수도집단재배의 기술체계에 관한 연구)

  • Min-Shin Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.8 no.1
    • /
    • pp.129-177
    • /
    • 1970
  • For the purpose of establishing the systematized technical scheme of the cooperative rice cultivation which has most significant impact to improve rice productivity and the farm management, the author have studied the cultivation practices, and the variation of rice growth and yield between the cooperative rice cultivation and the individual rice cultivation at random selected 18 paddy fields. The author also have investigated through comparative method on the cultivation practices, management, organization and operation scheme of the two different rice cultivation methods at 460 paddy fields. The economic feasibility has been ana lysed and added in this report. The results obtained from this study are summarized as follows; 1. In the nursery, the average amount of fertilizer application, especially, phosphate and potassium, and the frequency of chemicals spray for the disease, insect and pest control at the cooperative rice cultivation are significantly higher than those of the individual rice cultivation. 2. The cultivation techniques of the cooperative rice farming after the transplanting can be characterized by a) the earlier transplanting of rice, b) the denser hills per unit area and the lesser number of seedlings per hill, c) the application of larger quantities of fertilizer including nitrogen, phosphate and potassium, d) more divided application of fertilizers, split doses of the nitrogen and potassium, e) the increased frequencies of the chemicals spray for the prevention of disease, insect and pest damages. 3. The rate of lodging in the cooperative rice cultivation was slightly higher than that of the individual rice cultivation, however, the losses of rice yield owing to the occurrence of rice stem borer and grass leaf roller in the cooperative rice cultivation were lower than that of the individual rice cultivation. 4. The culm length, panicle length, straw weight and grain-straw ratio are respectively higher at the cooperative rice cultivation, moreover, the higher variation of the above factors due to different localities of the paddy fields found at the individual rice cultivation. 5. The number of panicles, number of flowers per panicle and the weight of 1, 000 grains, those contributing components to the rice yield were significantly greater in the cooperative rice cultivation, however, not clear difference in the maturing rate was observed. The variation coefficient of the yield component in the cooperative cultivation showed lower than that or the individual rice cultivation. 6. The average yield of brown rice per 10 are in the cooperative rice cultivation obtained 459.0 kilograms while that of the individual rice cultivation brought 374.8 kilograms. The yield of brown rice in the cooperative rice cultivation increased 84.2 kilogram per 10 are over the individual rice cultivation. With lower variation coefficient of the brown rice yield in the cooperative rice cultivation, it can be said that uniformed higher yield could be obtained through the cooperative rice cultivation. 7. Highly significant positive correlations shown between the seeding date and the number of flowers per panicle, the chemical spray and the number of flowers per panicle, the transplanting date and the number of flowers per panicle, phosphate application and yield, potassium application and maturing rate, the split application of fertilizers and yield. Whilst the significant negative correlation was shown between the transplanting date and the maturing rate 8. The results of investigation from 480 paddy fields obtained through comparative method on the following items are identical in general with those obtained at 18 paddy fields: Application of fertilizers, chemical spray for the control of disease, insects and pests both in the nursery and the paddy field, transplanting date, transplanting density, split application of fertilizers and yield n the paddy fields. a) The number of rice varieties used in the cooperative rice cultivation were 13 varieties while the individual rice cultivation used 47 varieties. b) The cooperative rice cultivation has more successfully adopted improved cultivation techniques such as the practice of seed disinfection, adoption of recommended seeding amount, fall ploughing, application of red soil, introduction of power tillers, the rectangular-type transplanting, midsummer drainage and the periodical irrigation. 9. The following results were also obtained from the same investigation and they are: a) In the cooperative rice cultivation, the greater part of the important practices have been carried out through cooperative operation including seed disinfection, ploughing, application of red soil and compost, the control of disease, insects and pests, harvest, threshing and transportation of the products. b) The labor input to the nursery bed and water control in the cooperative rice cultivation was less than that of the individual rice cultivation while the higher rate of labor input was resulted in the red soil and compost application. 10. From the investigation on the organization and operation scheme of the cooperative rice cultivation, the following results were obtained: a) The size of cooperative rice cultivation farm was varied from. 3 ha to 7 ha and 5 ha farm. occupied 55.9 percent of the total farms. And a single cooperative farm was consisted of 10 to 20 plots of paddies. b) The educational back ground of the staff members involved in the cooperative rice cultivation was superior than that of the individual rice cultivation. c) All of the farmers who participated to the questionaires have responded that the cooperative rice cultivation could promise the increased rice yield mainly through the introduction of the improved method of fertilizer application and the effective control of diseases, insects and pests damages. And the majority of farmers were also in the opinion that preparation of the materials and labor input can be timely carried out and the labor requirement for the rice cultivation possibly be saved through the cooperative rice cultivation. d) The farmers who have expressed their wishes to continue and to make further development of the cooperative rice cultivation was 74.5 percent of total farmers participated to the questionaires. 11. From the analysis of economical feasibility on the two different methods of cultivation, the following results were obtained: a) The value of operation cost for the compost, chemical fertilizers, agricultural chemicals and labor input in the cooperative rice cultivation was respectively higher by 335 won, 199 won, 288 won and 303 won over the individual rice cultivation. However, the other production costs showed no distinct differences between the two cultivation methods. b) Although the total value of expenses for the fertilizers, agricultural chemicals, labor input and etc. in the cooperative rice cultivation were approximately doubled to the amount of the individual rice cultivation, the net income, substracted operation costs from the gross income, was obtained 24, 302 won in the cooperative rice cultivation and 20, 168 won was obtained from the individual rice cultivation. Thereby, it can be said that net income from the cooperative rice cultivation increased 4, 134 won over the individual rice cultivation. It was revealed in this study that the cooperative rice cultivation has not only contributed to increment of the farm income through higher yield but also showed as an effective means to introduce highly improved cultivation techniques to the farmers. It may also be concluded, therefore, the cooperative rice cultivation shall continuously renovate the rice production process of the farmers.

  • PDF