• Title/Summary/Keyword: effective energy input

Search Result 192, Processing Time 0.029 seconds

Evaluation of Energy Saving with Vector Control Inverter Driving Centrifugal Pump System (벡터 제어 인버터 구동 원심펌프시스템의 에너지 절감 평가)

  • Suh, Sang-Ho;Kim, Kyungwuk;Kim, Hyoung-Ho;Yoon, In Sik;Cho, Min-Tae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.67-72
    • /
    • 2015
  • The purpose of this study is to achieve energy saving effect of inverter driving multistage centrifugal pump. For determining the operation points in the pump system, the system curves should be obtained experimentally. To get the system curves, three pumps combined in parallel and one pump operated with different rotational speeds. But for variable speed pump system, energy saving rates can not be evaluated from operation efficiencies. That is why operation efficiencies, system curves, duty cycles, and input powers of the pump system were measured by the constructed experimental apparatus. The duty cycle segmented into different flow rates and weighting the average value for each segment by the interval time. The system was operated with two different periods. The mean duty cycles were collected from apartment and found that the system operated at 40% and at 50% or below capacity. Measured energy saving rate was 58.16%. Estimating method of energy saving rate could be more effective operation index than that of operation efficiency.

Characteristic Features and Effect of Neo-Hydrofoil Impeller Applied in Sewage Treatment Plants (하수처리 공법별 네오하이드로포일 교반기의 적용 특성 및 효과)

  • Joo, Yoon-Sik;Son, Guntae;Bae, Youngjun;Lee, Seunghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • In this study, a newly developed agitator with hydrofoil impeller applied to actual biological process in advanced wastewater treatment plant was evaluated. Several series of experiments were conducted in two different wastewater treatment plants where actual problems have been occurred such as the production of scums and sludge settling. For more effective evaluation, computational fluid dynamics (CFD) and measurements of MLSS (Mixed Liquor Suspended Solids) and DO (Dissolved Oxygen) were used with other measuring equipments. After the installation of one unit of vertical hydrofoil agitator in plant A, scum and sludge settling problems were solved and more than seventy percent of operational energy was saved. In case of plant B, there were three cells of each anoxic and anaerobic tanks, and each cell had one unit of submersible horizontal agitator. After the integration of three cells to one cell in each tank, and installation of one vertical hydrofoil agitator per tank, all the problems caused by improper mixing were solved and more than eighty percent of operational energy was found to be saved. Simple change of agitator applied to biological process in wastewater treatment plant was proved to be essential to eliminate scum and sludge settling problems and to save input energy.

Probabilistic Safety Assessment for High Level Nuclear Waste Repository System

  • Kim, Taw-Woon;Woo, Kab-Koo;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.53-72
    • /
    • 1991
  • An integrated model is developed in this paper for the performance assessment of high level radioactive waste repository. This integrated model consists of two simple mathematical models. One is a multiple-barrier failure model of the repository system based on constant failure rates which provides source terms to biosphere. The other is a biosphere model which has multiple pathways for radionuclides to reach to human. For the parametric uncertainty and sensitivity analysis for the risk assessment of high level radioactive waste repository, Latin hypercube sampling and rank correlation techniques are applied to this model. The former is cost-effective for large computer programs because it gives smaller error in estimating output distribution even with smaller number of runs compared to crude Monte Carlo technique. The latter is good for generating dependence structure among samples of input parameters. It is also used to find out the most sensitive, or important, parameter groups among given input parameters. The methodology of the mathematical modelling with statistical analysis will provide useful insights to the decision-making of radioactive waste repository selection and future researches related to uncertain and sensitive input parameters.

  • PDF

Application of Perturbation-based Sensitivity Analysis to Nuclear Characteristics (섭동론적 감도해석 이론의 원자로 핵특성에의 응용)

  • Byung Soo Lee;Mann Cho;Jeong Soo Han;Chung Hum Kim
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.78-84
    • /
    • 1986
  • An equation of material number density sensitivity coefficient is derived using first-order perturbation theory. The beginning of cycle of Super-Phenix I is taken as the reference system for this study. Effective multiplication factor of the reference system is defined as system response function and fuel enrichment and fuel effective density are chosen for the variation of reference input data since they are described by material number density which is a component of Boltzmann operator. The nuclear computational code system (KAERI-26 group cross section library/1DX/2DB/PERT-V) is employed for this calculation. Sensitivity coefficient of fuel enrichment on effective multiplication factor is 4.576 and sensitivity coefficient of effective fuel density on effective multiplication factor is 0.0756. This work shows that sensitivity methodology is lesser timeconsuming and gives more informations on important design parameters in comparison with the direct iterative calulation through large computer codes.

  • PDF

Empirical model to estimate the thermal conductivity of granite with various water contents (다양한 함수비를 가진 화강암의 열전도도 추정을 위한 실험적 모델)

  • Cho, Won-Jin;Kwon, Sang-Ki;Lee, Jae-Owan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 2010
  • To obtain the input data for the design and long-term performance assessment of a high-level waste repository, the thermal conductivities of several granite rocks which were taken from the rock cores from the declined borehole were measured. The thermal conductivities of granite were measured under the different conditions of water content to investigate the effects of the water content on the thermal conductivity. A simple empirical correlation was proposed to predict the thermal conductivity of granite as a function of effective porosity and water content which can be measured with relative ease while neglecting the possible effects of mineralogy, structure and anisotropy. The correlation could predict the thermal conductivity of granite with the effective porosity below 2.7% from the KURT site with an estimated error below 10%.

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴특성)

  • Lee, Yun;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.215-220
    • /
    • 2001
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By varying strength and age, load-crack mouth opening displacement curves were obtained and the results were analyzed by linear elastic fracture mechanics. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete age from 1 day to 28 days. The obtained fracture parameters at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

  • PDF

Research on Frequency Average Analysis of vibrational Power Flow Analysis (진동파워흐름해석의 주파수 평균해석에 대한 연구)

  • Lee, Jea-Min;Hong, Suk-Yoon;Park, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.971-977
    • /
    • 2005
  • Power Flow Analysis (PFA) is developed for the effective predictions of frequency-averaged vibrational response in medium-to-high frequency ranges. In PFA, the power coefficients of semi-infinite structure and for-field energy density are used to predict the vibrational responses of structures. Generally, at high frequencies, PFA can predict narrow-band frequency-averaged vibrational responses of built-up structures. However, in low- to medium frequency ranges, the dynamic responses obtained by PFA represent broad-band frequency-averaged vibrational energy densities. For the prediction of vibrational response variance in Power Flow Finite Element Method (PFFEM), the variances of input power and joint element matrix describing structural coupling relationship are derived. Finally, for the validity of developed formulation, numerical examples for two co-planer plates are performed and the vibrational response variance of the structure are compared with the results of classical and PFFEM solutions.

  • PDF

Compressor Control of a Multi-type AIr Conditioning System (멀티형 냉방시스템의 압축기 제어)

  • 한도영;권형진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.780-786
    • /
    • 2001
  • For the compressor speed control of a multi-type air conditioning system, a fuzzy control algorithm was developed. The sum of zone temperature errors and its derivative were used as input variables, and the compressor speed was selected as the output variable. To test the effectiveness of the control algorithm, one outdoor environmental chamber and four indoor environmental chambers were used. In the chambers the zone temperature step change test and the indoor unit change over test were performed. Test results showed that, for the control of compressor speed, the fuzzy control algorithm was more effective than the conventional proportional control algorithm for the energy conservation.

  • PDF

Femto-Second Laser Glass Cutting for Flat Panel Display (펨토초 레이저를 이용한 평판 디스플레이 유리기판 절단 연구)

  • Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.247-252
    • /
    • 2008
  • A laser glass cutting system using a femto-second laser was evaluated for Flat Panel Display (FPD) glass. A theoretical analysis of the ablation threshold and depth is described using an explicit analytic form. Experiments for clean and deep grooves were performed using a 3W femto-second laser, and the relationships between the input energy and the scribing depth as well as the threshold energy are presented. Mechanical breaking after the scribing process was carried out and the results are compared with a theoretical method. It was found that a two-sided LCD panel glass can be cut clearly using the laser cutting method. The methodology was found to be very effective as a mass-production cutting system.

A Study on the Performance and Particulate Emission Characteristics for the Hydrogen-Premixed Diesel Engine (수소 혼소 디젤 기관의 성능 및 미립자상 물질의 배출 특성에 관한 연구)

  • 채재우;한동성;이상만;전영남;정영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.34-41
    • /
    • 1993
  • In order to reduce harmful substances such as particulates and nitric oxides emitted from diesel engine, man kinds of methodology like high pressure spray of diesel fuel oil, exhaust gas recirculation, emulsified fuel usage and dual fuelling have been studied. Dual fuelling of a diesel engine with hydrogen which is well-known as the clean fuel and has excellent combustibility is expected to be effective in reducing harmful substances from diesel engine. This experimental study was conducted to investigate the effect of premixed hydrogen with intake air on the performance and particulate emission characteristics using a single cylinder, prechamber type diesel engine. As a result, it was clarified that a hydrogen-premixed diesel engine can be operated in the state of lower particulate emission and slightly aggravated fuel economy, compared with the conventional diesel engine.

  • PDF