• 제목/요약/키워드: effective diffusion

검색결과 844건 처리시간 0.032초

Fe-Cr-Ni강 용접금속부의 미세편석에 관한 해석 (Analysis of Microsegregation in Fe-Cr-Ni Weld Metal)

  • 박준민;박종민;안상곤;이창희;윤의박
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.56-66
    • /
    • 1998
  • During solidification or welding of alloys, the solute redistribution brings out microsegregation. The microsegregation causes the formation of non-equilibrium second phases, shrinkage and porosity degrading mechanical/chemical properties Therefore, it has been required to predict microsegregation quantitatively. To predict the degree of microsegregation, more exact and appropriate computer simulation technique has been actively used during last two decades. To predict the degree of microsegregation in weld metal, an advanced two dimensional model was suggested. In the new model, both primary and secondary arm regions were defined for the analysis region. The growth in the primary arm regina was assumed to be a planar for effective calculation. Especially, for the growth of a secondary arm, a simple and effective mathematical function was established to show the growing pattern, the solute diffusion in the solid phase was calculated by finite difference method (FDM). The solid-liquid interface movement was considered to be in local equilibrium state. The experiments for welding of 310S stainless steel were carried out in order to examined the reasonability and feasibility of this model. The concentration profiles of the solute predicted by this model were compared with those obtained from experimental works.

  • PDF

라그란지안 입자확산모델개발(농도 계산방법의 검토) (A Development of Lagrangian Particle Dispersion Model (Focusing on Calculation Methods of the Concentration Profile))

  • 구윤서
    • 한국대기환경학회지
    • /
    • 제15권6호
    • /
    • pp.757-765
    • /
    • 1999
  • Lagrangian particle dispersion model(LPDM) is an effective tool to calculate the dispersion from a point source since it dose not induce numerical diffusion errors in solving the pollutant dispersion equation. Fictitious particles are released to the atmosphere from the emission source and they are then transported by the mean velocity and diffused by the turbulent eddy motion in the LPDM. The concentration distribution from the dispersed particles in the calculation domain are finally estimated by applying a particle count method or a Gaussian kernel method. The two methods for calculating concentration profiles were compared each other and tested against the analytic solution and the tracer experiment to find the strength and weakness of each method and to choose computationally time saving method for the LPDM. The calculated concentrations from the particle count method was heavily dependent on the number of the particles released at the emission source. It requires lots fo particle emission to reach the converged concentration field. And resulting concentrations were also dependent on the size of numerical grid. The concentration field by the Gaussian kernel method, however, converged with a low particle emission rate at the source and was in good agreement with the analytic solution and the tracer experiment. The results showed that Gaussian kernel method was more effective method to calculate the concentrations in the LPDM.

  • PDF

강의실에서의 냉방부하에 따른 열쾌적성 평가지표 비교 - PMV와 EDT의 연관성 - (Comparison of Thermal Comfort Performance Indices for Cooling Loads in the Lecture Room - An Correlation of PMV Bnd EDT -)

  • 노광철;오명도
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.868-877
    • /
    • 2005
  • We performed the experimental and the numerical study on the comparison of thermal comfort performance indices for cooling loads in the lecture room for 4 cases: Fan coil unit(FCU) or 4-way cassette air-conditioner is respectively operated with the ventilation system or without. We measured the velocity, the temperature distribution and predicted mean vote(PMV) value in the lecture room for 4 different air-conditioning methods. Effective draft temperature(EDT) and PMV were investigated to analyze the characteristics of two thermal comfort indices in the lecture room and to compare their values each other. From the results we knew that there is the similarity between PMV values and EDTs when the room is air-conditioned for cooling loads. It turned out that definition of the control temperature is very important when the EDT is calculated. Finally EDT should not be used to predict the accurate thermal comfort in case that the temperature and humidity are suddenly varied and the zone affected by the solar and inner wall radiation.

Drying Kinetics of Onion Slices in a Hot-air Dryer

  • Lee, Jun-Ho;Kim, Hui-Jeong
    • Preventive Nutrition and Food Science
    • /
    • 제13권3호
    • /
    • pp.225-230
    • /
    • 2008
  • Onion slices were dehydrated in a single layer at drying air temperatures ranging from $50{\sim}70^{\circ}C$ in a laboratory scale convective hot-air dryer at an air velocity of 0.66 m/s. The effect of drying air temperature on the drying kinetic characteristics were determined. It was found that onion slices would dry within $210{\sim}460\;min$ under these drying conditions. Moisture transfer during dehydration was described by applying the Fick's diffusion model and the effective diffusivity changed between $1.345{\times}10^{-8}$ and $2.658{\times}10^{-8}\;m^2/s$. A non-linear regression procedure was used to fit 9 thin layer drying models available in the literature to the experimental drying curves. The Logarithmic model provided a better fit to the experimental drying data as compared to other models. Temperature dependency of the effective diffusivity during the hot-air drying process obeyed the Arrhenius relationship with estimated activation energy being 31.36 kJ/mol. The effect of the drying air temperature on the drying model constants and coefficients were also determined.

Antibiotic Effect of Leaf, Stem, and Root Extracts in Smallanthus sonchifolius H. Robinson

  • Shin, Dong Young;Hyun, Kyu Hwan;Kuk, YongIn;Shin, Dong Won;Kim, Han Woo
    • 한국자원식물학회지
    • /
    • 제30권3호
    • /
    • pp.311-317
    • /
    • 2017
  • This study was conducted with the aim of evaluating the antibiotic effects of leaves, stems, and roots in yacon (Smallanthus sonchifolius). Antibacterial activity of leaf extract by disk diffusion method with Bacillus subtilis and Escherichia coli respectively showed 13.3 and 13.75mm diameters of clear zone. There was no significant difference between the stems and leaves. The minimum inhibitory concentration of leaves' heating and agitation extraction showed a restrain of strain at 1mg/ml, but the stems and root extract did not appear. Yacon is a functional antibacterial material, and methanol extraction is more effective than water. This research was to investigate the growth stage of collection has the most effective antibacterial effects. It has collected yacon's leaves from June to October, which is an appropriate time for collection right before reaping. Yacon leaf has antibacterial effects on Bacillus subtilis, Escherichia coli, Enterococcus faecium, and Salmonella enteritifis. There were no significant differences by the growth stage of collection. Leaves collected in July are high in phenol which helps in sulfating activity works well considering the high scavenging capability of DPPH. Leaves collected in September are high in total flavonoid.

Design of silicon-on-nothing structure based on multi-physics analysis

  • Song, Jihwan;Zhang, Linan;Kim, Dongchoul
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권3호
    • /
    • pp.225-231
    • /
    • 2016
  • The formation of silicon-on-nothing (SON) structure during an annealing process from the silicon substrate including the trench structures has been considered as an effective technique to construct the structure that has an empty space under the closed flat surface. Previous studies have demonstrated the mechanism of the formation of SON structure, which is based on the surface diffusion driven by the minimization of their surface energy. Also, it has been fragmentarily shown that the morphology of SON structure can be affected by the initial design of trench (e.g., size, number) and the annealing conditions (e.g., temperature, pressure). Based on the previous studies, here, we report a comprehensive study for the design of the cavity-embedded structure (i.e., SON structure). To do this, a dynamic model has been developed with the phase field approach. The simulation results represent that the morphology of SON structures could be detailedly designed, for example the position and thickness of cavity, the thickness of top and bottom layer, according to the design parameters. This study will give us an advantage in the effective design of SON structures.

제한투기시설에서 배출되는 여수의 거동 (The Behavior of Effluent Discharged from the Confined Dumping Facility)

  • 정대득;이중우
    • 한국항만학회지
    • /
    • 제14권4호
    • /
    • pp.429-439
    • /
    • 2000
  • The primary purpose of dredging work is to maintain navigational readiness and to increase environmental amenity. Therefore the dredging project, which is composed of excavating, removing, transporting and storing or dumping dredged material, must be carefully managed to insure that dredging works are completed in a cost-effective and environmentally safe method. The most important point in dumping operations is evaluating and decreasing the impacts of dumping works at the dumping area. One of the most effective method for this purpose is using the schematic process composed of the sophisticate plan, precise work and predicting/reducing the impacts based on an numerical model being closely linked with field observation. In this study, a numerical model is used to predict the spatial transport and fate of the effluent discharged from the confined dumping facility(CDF) located at a coastal area. To achive this purpose, numerical models were used for reappearing the tidal current of concerned area. These models were then applied to Mokpo harbpr where capital dredging and maintenance dredging are being conducted simultaneously and the CDF is under construction. In series of model case study, we found that the effluent discharged from CDF was governed by the receiving water condition and outfall geometry, so that limit of near-field was 14∼500 meter down stream and 4∼150 meter in transverse direction. dilution ranged from 1.1 to 8.2 on the cases. Long-term diffusion characteristics was governed by the dilution rate during near-field behavior, ambient conditions and CDF operation modes.

  • PDF

지유 분획의 Candida albicans에 대한 항균효과 (Antifungal Effect of Sanguisorba officinalis L. fractions on Candida albicans)

  • 이재혁;최봉실;박정숙;신태용
    • 생약학회지
    • /
    • 제48권2호
    • /
    • pp.166-171
    • /
    • 2017
  • We have studied the antifungal effect of 19 medicinal plants with paper disc diffusion method against candida albicans. As a result, Sanguisorba officinalis L., Cinnamomum cassia, Rheum coreanum, Perilla frutescens and Eugenia caryophyllata have been found to be effective against C. albicans. Among these, Sanguisorba officinalis L. was most effective at 24 hours and 48 hours. Its clear zone diameter was 17 mm for 24 hours and 16 mm for 48 hours. The antifungal activity of the solvent fraction of Sanguisorba officinalis L. by n-hexane, chloroform, ethyl acetate and n-butanol was the best for the chloroform fraction of 28 mm for 24 hours and 18 mm for 48 hours. The MIC concentration of the chloroform fraction was $80{\mu}g/50{\mu}l$ at 24 hours and $240{\mu}g/50{\mu}l$ at 48 hours.

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.

Antimicrobial Activities of White, Red, and Extruded Ginsengs with Different Extraction Conditions

  • Norajit, Krittika;Park, Mi-Ja;Ryu, Gi-Hyung
    • Food Science and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.850-856
    • /
    • 2008
  • White, red, and extruded ginsengs were studied against 8 strains of food-borne pathogens and/or food spoilage microorganisms. The ginseng powders were extracted with different extractants and screened for antimicrobial activity using the disc diffusion and broth dilution techniques. The results showed that the yield of extraction was higher with increase of aqueous solution content and temperature. Preliminary screening revealed that the red ginseng extracts were most active, that has been found to be highly effective against all tested microbe except Listeria monocytogenes. Moreover, Bacillus subtilis has shown highly susceptible, which the diameters of inhibition zone values of 28 extracts were between 7 and 14 mm. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) recorded for the different crude ginseng extracts against microorganism using ranged from 6.25 to 100 mg/mL, indicated that the methanol extract of ginseng were more effective than ethanol and water extracts. The 60% methanol extract of red ginseng had the greatest effects against B. subtilis with MIC and MBC values at 6.25 mg/mL.