• 제목/요약/키워드: effective damping ratio

검색결과 139건 처리시간 0.024초

분포하중이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향 (Effects of Distributed Load on the Dynamic Response of the Reinforced Concrete Slabs)

  • 오경윤;조진구;최수명;홍종현
    • 한국농공학회논문집
    • /
    • 제50권2호
    • /
    • pp.19-26
    • /
    • 2008
  • This study has been carried out to investigate the dynamic characteristics of RC slabs. For this purpose, the 20-node solid element has been used to discretize the RC slabs into two parts of concrete and rebar. The material non-linearity considering elasto-visco plastic model and the smeared crack model have been adopted in the finite element formulation. The applied load can handle step load, load intensity of harmonic load, area of distributed load and frequency. The frequency of harmonic load has an significant effect on dynamic behaviour in terms of displacement. As the frequency is increased, the effect of load amplitude is more serious. Especially, if the frequency of harmonic load exceeds 30 Hz, it is noted that the displacement by harmonic load is greater than that by step load. In case of harmonic load, the damping effect shows no certain tendency with respect to frequency of load. In details, the damping is effective when the frequency of harmonic load is 2 Hz, but there is no consistent tendency according to damping ratio. The dynamic response when the frequency of harmonic load is 3 Hz shows same result for undamped case as well as for damped case with 5% damping ratio. It is also noted that we can get the largest deflection for damped case with 1% damping ratio. However, there is not any damping effect when the frequency of harmonic load is greater than 4 Hz.

고감쇠고무와 강재슬릿이 결합된 하이브리드 댐퍼의 실험적 구조성능평가 (Experimental Structural Performance Evaluation of Hybrid Damper Combining with High Damping Rubber and Steel Slit)

  • 이준호;박병태;김유성
    • 한국공간구조학회논문집
    • /
    • 제22권4호
    • /
    • pp.23-30
    • /
    • 2022
  • It is effective to apply hybrid damping device that combine separate damping device to cope with various seismic load. In this study, HRS hybrid damper(hybrid rubber slit damper) in which high damping rubber and steel slit plate are combined in parallel was proposed and structural performance tests were performed to review the suitability for seismic performance. Cyclic Loading tests were performed in accordance with criteria presented in KDS 41 17 00 and MOE 2019. As a result of the test, the criteria of KDS 41 17 00 and MOE2019 was satisfied, and the amount of energy dissipation increased due to the shear deformation of the high-damping rubber at low displacement. Result of performing the RC frame test, the allowable story drift ratio was satisfied, and the amount of energy dissipation increased in the reinforced specimen compared to the non-reinforced specimen.

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables

  • Huang, Zhiwen;Hua, Xugang;Chen, Zhengqing;Niu, Huawei
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.615-626
    • /
    • 2019
  • Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.

스카이브릿지를 이용한 RC 주거용 건물의 진동제어 (Vibration Control of RC Residential Building Structure Using Sky-Bridge)

  • 안상경;오정근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.450-453
    • /
    • 2006
  • Coupling adjacent building with supplemental damping devices is a developing method of reduced structural response due to wind and seismic excitations. The philosophy is to allow structures, vibrating at different frequencies, to exert control forces upon one another to reduce the overall responses of the system. This paper studies the effect of installing vibration control devices of two high rise building structures(49 stories and 42 stories) connected by sky-bridge. According to the analysis results the use of sky-bridge can be effective in increasing damping ratio of the system.

  • PDF

원형 RC 기둥의 내진성능과 휨 초과강도 (Seismic Performance and Flexural Over-strength of Circular RC Column)

  • 고성현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권5호
    • /
    • pp.49-58
    • /
    • 2013
  • 축소모형 원형기둥 실험체 8개를 제작하여 일정한 축력 하에서 반복 횡하중을 가력하는 실험을 수행하였다. 실험체들은 형상비 4.5인 실험체로 설계되었다. 실험체의 주요변수는 횡방향철근비, 축방향철근비, 축방향철근 항복강도와 축력비이다. 기둥 실험체들의 실험결과들은 축방향철근비, 횡철근비와 축력비에 따라 등가점성비, 잔류변형, 유효강성등과 같은 내진성능이 다르게 나타났다. 낮은 항복강도의 축방향철근이 적용된 실험체는 등가점성감쇠비와 잔류변형과 같은 내진성능이 낮게 나타났다. 국내의 도로교설계기준에 휨 초과강도 규정이 2012년에 채택되었다. 실험결과들은 공칭강도, 비선형 모멘트-곡률 해석 결과, AASHTO LRFD 및 도로교설계기준 (한계상태설계법)과 같은 기준들과 비교하였다.

음향공 형상에 따른 연소 불안정 제어 효과 (The effects of the Control of Combustion Instabilities in accordance with various Acoustic Cavities)

  • 차정필;양재준;서주형;김홍집;고영성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.73-76
    • /
    • 2006
  • 액체 로켓엔진에서의 고주파 연소불안정 제어를 위한 수동 안정화 제어 기구로 음향공을 적용하여 감쇠 효과의 적합성을 검증하였다. 음향공의 기하학적 형상에 따른 음향 감쇠 효과를 비교하기 위하여, 주요 설계 변수를 변화시킨 음향공 모델에 대해 유해 공진주파수 감쇠 효과를 정량적으로 비교, 분석하였다. 선형음향해석과 실험적 방법 모두 만족할만한 일치성을 나타내었으며, 오리피스 입구 면적이 가장 크거나 오리피스 길이가 가장 짧은 경우에서 감쇠 효과가 가장 크게 나타났다. 결론적으로 음향공을 이용한 최적의 음향공 제어를 위해서는 음향공 부피를 고려한 최적기 음향공 설계가 절대적으로 필요함을 입증한다.

  • PDF

아웃리거 댐퍼시스템의 감쇠와 강성에 따른 고층 건물 풍응답 제어 성능 평가 (Performance Evaluation of Wind Response Control of High-Rise Buildings by Damping and Stiffness of Outrigger Damper System)

  • 박광섭;김윤태
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.41-48
    • /
    • 2018
  • Recently, the concept of an outrigger damper system with a damper added to the existing outrigger system has been developed and applied for dynamic response control of high-rise buildings. However, the study on the structural characteristics and design method of Outrigger damper system is in the early stages. In this study, a 50 story high - rise building was designed and an outrigger damper system with viscoelastic damper was applied for wind response control. The time history analysis was performed by using the kaimal spectrum to create an artificial wind load for a total of 1,000 seconds at 0.1 second intervals. Analysis of the top horizontal maximum displacement response and acceleration response shows that outrigger damper systems are up to 28.33% and 49.26% more effective than conventional outrigger systems, respectively. Also, it is confirmed that the increase of damping ratio of dampers is effective for dynamic response control. However, since increasing the damping capacity increases the economic burden, it is necessary to select the appropriate stiffness and damping value of the outrigger damper system.

액체 Sloshing에 의한 진동감쇠기에 관한 실험적 연구 (An Experimetal Study on the Damping Characteristics of Liquid Sloshing)

  • 양보석;전순기;김원철
    • 한국정밀공학회지
    • /
    • 제8권1호
    • /
    • pp.96-104
    • /
    • 1991
  • This study is concerned with the fluid sloshing dampers to suppress the high vibration in the resonance and operating regions. An experimental investigation was conducted to determine the logarithmic decrement, natural frequency, tuning frequency ratio of oscillation of liquids contained in an spherical rigid container. The decay of the vibration amplitude was studied for the range of liquid filling ratio in container. The results of the investigation indicate that the sloshing motion of liquids results in an increase in the available effective damping when the filling ratio is in the region near H/R=1.3-1.6.

  • PDF

Experimental studies of suppressing effectiveness on sloshing with two perforated floating plates

  • Yu, Yue-Min;Ma, Ning;Fan, She-Ming;Gu, Xie-Chong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.285-293
    • /
    • 2019
  • In the present paper, model tests of suppressing sloshing fitted with two perforated floating plates are carried out. The study involves identification of system performance such as the suppression and the solidity ratio. Three different solidity ratios of perforated plates have been tried out as potential positive slosh damping devices. A series of painstaking experiments have been conducted in a rigid rectangular tank on six degrees of freedom motion platform under roll harmonic excitation. Comparison of the clean tank shows that the three types of perforated plates are all effective on damping the run-up and impact pressure along the bulkhead. The parametric study indicates that the perforated plate with the median solidity ratio is the most optimal one in suppressing sloshing among three configurations.

The effect of soil-structure interaction on inelastic displacement ratio of structures

  • Eser, Muberra;Aydemir, Cem
    • Structural Engineering and Mechanics
    • /
    • 제39권5호
    • /
    • pp.683-701
    • /
    • 2011
  • In this study, inelastic displacement ratios and ductility demands are investigated for SDOF systems with period range of 0.1-3.0 s. with elastoplastic behavior considering soil structure interaction. Earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used in analyses. Soil structure interacting systems are modeled with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for inelastic displacement ratio of interacting system ($\tilde{C}_R$) as a function of structural period of interacting system ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}/T$). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.