• Title/Summary/Keyword: effective crack model

Search Result 137, Processing Time 0.022 seconds

Optimization for Inspecdtion Planning of Ship Structures Considering Corrosion Effects (부식효과를 고려한 선체구조 검사계획안의 최적화)

  • Sung-Chan Kim;Jang-Ho Yoon;Yukio Fujimoto
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.137-146
    • /
    • 1999
  • Inspection becomes to be important in the safety of structure and economical viewpoint, because structural damage accompanies lots of economical cost and social problems. Especially ship structure is composed of a lot of members and it is impossible to inspect all members continuously. The purpose of this paper is to get optimal inspection plan containing inspection time and method. Crack is one of major modes on the structural failure and can lead to collapse of structure. In this paper, the deteriorating process, which contains inspection to detect the crack before the propagation to large crack, is idealized as Markov chain model. Genetic algorithm is also used to accomplish the optimization of inspection plan. Especially, the probabilistic characteristics of cracks are changed, because ship is operating in corrosive environments and the scantling of structural members is reduced due to corrosion. Non-stationary Markov chain model is used to represent the process of corrosion in structural members. In this paper, the characteristics of indivisual inspection plan are compared by numerical examples for the change of corrosion rate, the cost due to scheduled system down and target failure probability. From the numerical example, it can be seen that the improvement of fatigue life for the members with short fatigue life is the most effective way in order to reduce total maintenance cost.

  • PDF

Tensile Deformation Characteristics of ECC Predicted with a Modified Fiber Bridging Curve (수정된 섬유 가교 특성을 고려한 ECC의 인장변형특성)

  • Kim, Jeong-Su;Lee, Bang-Yeon;Kim, Jin-Keun;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.541-548
    • /
    • 2009
  • A theoretical prediction model of fiber bridging curve was established based on the assumption that fibers are uniformly distributed on the crack surface. However, the distance between fibers and their orientation with respect to crack surface can greatly affect the prediction of fiber bridging curve. Since, the shape of fiber bridging curve is a critical factor for predicting the tensile stress-strain relationship of ECC, it is expected that the assumption of uniform distribution of fiber may cause a significant error when predicting the tensile behavior of ECC. To overcome this shortcoming, a new prediction method of stress-strain relation of ECC is proposed based on the modified fiber bridging curve. Only effective fibers are taken into account considering the effects of their orientation and distance between them. Moreover, the approach for formulating the tensile stress-strain relation is discussed, where a procedure is presented for obtaining important parameters, such as the first crack strength, the peak stress, the displacement at peak stress, tensile strain capacity, and the crack spacing. Subsequent uniaxial tensile tests were performed to validate the proposed method. It was found that the predicted stress-strain relations obtained based on the proposed modified fiber bridging curve exhibited a good agreement with experimental results.

A comparative study for beams on elastic foundation models to analysis of mode-I delamination in DCB specimens

  • Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.149-162
    • /
    • 2011
  • The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.

A Study for Lifetime Predition of Expansion Joint Using HILS (HILS 기법을 적용한 신축관 이음 수명예측에 관한 연구)

  • Oh, Jung-Soo;Cho, Sueng-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.138-142
    • /
    • 2018
  • This study used HILS to test an expansion joint, which is vulnerable to the water hammer effect. The operation data for the HIL simulator was the length rate of the expansion joint by the water hammer, which was used for life prediction based on the vibration durability. For the vibration durability test, the internal pressure of the expansion joint was assumed to be a factor of the durability life, and the lifetime prediction model equation was obtained by curve fitting the lifetime data at each pressure. During the test, the major failure modes of crack and water leakage occurred on the surface of the bellows part. The lifetime prediction model typically follows an inverse power law model. The pressure is a stress factor, and the model is effective in only a specific environment. Therefore, another stress factor such as temperature will be added and considered for a mixed lifetime prediction model in the future.

Nonlinear Finite Element Analysis of Reinforced and Prestressed Concrete Structures (철근 및 프리스트레스트 콘크리트 구조물의 비선형 유한요소 해석)

  • Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.269-279
    • /
    • 1994
  • This paper concentrates on the finite element analysis of concrete structures considering the material nonlinearity and time-dependent structural behavior. Using the rotating crack model among the smeared cracking model, the structural behavior up to ultimate load is simulated, and concrete is assumed to be an orthotropic material. Especially to include the tension stiffening effect in bending behavior, a criterion based on the fracture mechanics concept is introduced and the numerical error according to the finite element mesh size can be minimized through the application of the proposed criterion. Besides, the governing equation for steel is systematized by embeded model to cope with the difficulty in modeling of complex geometry. Finally, to trace the structural behavior with time under cracked and/or uncracked section, an algorithm for the purpose of time-dependent analysis is formulated in plane stress-strain condition by the age-adjusted effective modulus method.

  • PDF

Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios

  • Yang, Yong;Hao, Ning;Xue, Yicong;Feng, Shiqiang;Yu, Yunlong;Zhang, Shuchen
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.345-360
    • /
    • 2022
  • In this paper, the impact on seismic performance of an economical effective technique for retrofitting reinforced concrete (RC) columns using high-strength steel strips under high axial compression ratios was presented. The experimental program included a series of cyclic loading tests on one nonretrofitted control specimen and three retrofitted specimens. The effects of the axial compression ratio and spacing of the steel strips on the cyclic behavior of the specimens were studied. Based on the test results, the failure modes, hysteretic characteristics, strength and stiffness degradation, displacement ductility, and energy dissipation capacity of the specimens were analyzed in-depth. The analysis showed that the transverse confinement provided by the high-strength steel strips could effectively delay and restrain diagonal crack development and improve the failure mode, which was flexural-shear failure controlled by flexural failure with better ductility. The specimens retrofitted using high-strength steel strips showed more satisfactory seismic performance than the control specimen. The seismic performance and deformation capacity of the retrofitted RC columns increased with decreasing axial compression ratio and steel strip spacing. Based on the test results, a hysteretic model for RC columns that considers the transverse confinement of high-strength steel strips was then established. The hysteretic model showed good agreement with the experimental results, which verified the effectiveness of the proposed hysteretic model. Therefore, the aforementioned analysis can be used for the design of retrofitted RC columns.

Economic Analysis of Long-life Asphalt Pavements using KoPMS (한국형 포장관리시스템을 활용한 장수명 아스팔트 포장의 경제성 분석)

  • Do, Myungsik;Kwon, Sooahn;Baek, Jongeun;Choi, Seunghyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.19-28
    • /
    • 2016
  • PURPOSES : Long-life asphalt pavements are used widely in developed countries. In order to be able to devise an effective maintenance strategy for such pavements, in this study, we evaluated the performance of the long-life asphalt pavements constructed along the national highways in South Korea. Further, an economic evaluation of the long-life asphalt pavements was performed based on a life-cycle cost analysis. We aimed to devise a model for evaluating the performance of long-life asphalt pavements using the national highway pavement management system (PMS) database as well as for analyzing the economic feasibility of such pavements, in order to promote their use in South Korea. METHODS : The maintenance history and pavement performance data were obtained from the national highway PMS database. The pavement performances for a total of 292 sections of 10 lanes (5 northbound lanes and 5 eastbound lanes) of national highways were used in this study. Models to predict the performances of hot mix asphalt (HMA) and long-life asphalt pavements under two distinct traffic conditions were developed using a simple regression method. Further, the economic feasibility of long-life asphalt pavements was evaluated using the Korea Pavement Management System (KoPMS). RESULTS : We developed service-life prediction models based on the traffic volume and the equivalent of single-axle load and found that long-life asphalt pavements have service lives 50% longer than those of HMA pavements. Further, the results of the economic analysis showed that long-life asphalt pavements are superior in terms of various economic indexes, including user cost, delay cost, total cost, and user benefits, even though their maintenance cost is higher than that of HMA pavements. A comparison of the economic feasibilities of the various groups showed that group A is superior to HMA pavements in all aspects except in terms of the maintenance criterion (crack 20% or higher) as per the NPV index. However, the long-life asphalt pavements in group B were superior in terms of the maintenance criterion (crack 25% or higher) regardless of the economic feasibility. CONCLUSIONS : The service life of long-life asphalt pavements was found to be approximately 50% longer than that of HMA pavements, regardless of the traffic volume characteristics. The economic feasibility of long-life asphalt pavements was evaluated based on the KoPMS. The results of the economic analysis were the following: long-life asphalt pavements are exceptional in terms of almost all factors, such as user cost, delay cost, total cost, and user benefit; however, the exception is the maintenance cost. Further, the economic feasibility of the long-life asphalt pavements in group B was found to be better than that of the HMA pavements (crack 25% or higher).

Heat Treatment Process Design of CrMoSC1 Steel by Prediction of Phase Transformation and Thermal Stress Analysis (상변태 예측 및 열응력 해석에 의한 CrMoSC1 강의 열처리 공정 설계)

  • Choi, B.H.;Kwak, S.Y.;Kim, J.T.;Choi, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.4
    • /
    • pp.247-255
    • /
    • 2005
  • Although heat treatment is a process of great technological importance in order to obtain desired mechanical properties such as hardness, the process was required a tedious and expensive experimentation to specify the process parameters. Consequently, the availability of reliable and efficient numerical simulation program would enable easy specification of process parameters to achieve desired microstructure and mechanical properties without defects like crack and distortion. In present work, the developed numerical simulation program could predict distributions of microstructure and thermal stress in steels under different cooling conditions. The computer program is based on the finite difference method for temperature analysis and microstructural changes and the finite element method for thermal stress analysis. Multi-phase decomposition model was used for description of diffusional austenite decompositions in low alloy steels during cooling after austenitization. The model predicts the progress of ferrite, pearlite, and bainite transformations simultaneously during quenching and estimates the amount of martensite also by using Koistinen and Marburger equation. To verify the developed program, the calculated results are compared with experimental ones of casting product. Based on these results, newly designed heat treatment process is proposed and it was proved to be effective for industry.

Identification of the Structural Damages in a Cylindrical Shell (원통형 셸에 발생한 구조손상의 규명)

  • Kim, Sung-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1586-1596
    • /
    • 2005
  • In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional damages generated within a cylindrical shell. First, the equations of motion for a damaged cylindrical shell are derived. Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from the equations of motion of a damaged shell. In contrast with most existing SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM may require only the FRF-data measured at damaged state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as needed to acquire a sufficient number of equations for damage identification analysis. The numerically simulated damage identification tests are conducted to study the feasibility of the present SDIM.

Finite element and design code assessment of reinforced concrete haunched beams

  • Gulsan, Mehmet Eren;Albegmprli, Hasan M.;Cevik, Abdulkadir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.423-438
    • /
    • 2018
  • This pioneer study focuses on finite element modeling and numerical modeling of three types of Reinforced Concrete Haunched Beams (RCHBs). Firstly, twenty RCHBs, consisting of three types, and four prismatic beams which had been tested experimentally were modeled via a nonlinear finite element method (NFEM) based software named as, ATENA. The modeling results were compared with experimental results including load capacity, deflection, crack pattern and mode of failure. The comparison showed a good agreement between the results and thus the model used can be effectively used for further studies of RCHB with high accuracy. Afterwards, new mechanism modes and design code equations were proposed to improve the shear design equation of ACI-318 and to predict the critical effective depth. These equations are the first comprehensive formulas in the literature involving all types of RCHBs. The statistical analysis showed the superiority of the proposed equation to their predecessors where the correlation coefficient, $R^2$ was found to be 0.89 for the proposed equation. Moreover, the new equation was validated using parametric and reliability analyses. The parametric analysis of both experimental and predicted results shows that the inclination angle and the compressive strength were the most influential parameters on the shear strength. The reliability analysis indicates that the accuracy of the new formulation is significantly higher as compared to available design equations and its reliability index is within acceptable limits.