• Title/Summary/Keyword: effective bond length

Search Result 56, Processing Time 0.022 seconds

Develop Evaluation Method of Effective Bond Length Between Concrete and Fiber Reinforcement Polymer (FRP로 보강된 콘크리트 부재의 유효부착길이 평가방법 제안)

  • Yi Waon Ho;Woo Hyun Su;Choi Ki Sun;Kang Dae Eon;Yang Won Jik;You Young Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.125-128
    • /
    • 2005
  • Recently new materials, such as fiber reinforced polymer(FRP) and other composite materials are being applied in reinforcing plate or plate or prestressing cables of concrete structures. Although these new materials themselves show the excellent durability and high strength, the bond behaviour between concrete surface and FRP is not well recognized. Therefore, this paper propose a evaluation method for effective bond length between fiber reinforced polymer(FRP) and concrete. To develop the evaluation method, this paper presents a review of current evaluation methods for effective bond length. These methods are compared by single face test, expose merits and demerits. And based on them, new evaluation method was developed. Finally, the new method was compared with existing methods to verify a adequateness for evaluation of effective bond length.

  • PDF

Experimental study on development length of prestressing strand in pretensioned prestressed concrete members (프리텐션 프리스트레스트 콘크리트 부재의 정착길이 평가)

  • Kim, Ui-Seong
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.49
    • /
    • pp.84-91
    • /
    • 2009
  • By bond mechanism between the prestressing strand and the concrete surrounding it, the effective force of prestressing must be transferred to the concrete entirely. The distance required to transfer the effective force of prestressing is called the transfer length, and the development length is the bond length required to anchor the strand as it resists external loads on the member. Transfer length was determined from the concrete strain profile at the level of the strands at transfer and development length was determined from various external loading lengths and compared with current code equation. Through the test results, bond failure is predicted based on the distress caused by cracks when they propagate within the transfer zone of prestressing strand. The current code equation was found to be conservative in comparison with the measured value.

  • PDF

Experimental Study on Development Length of Prestressing Strand in Pretensioned Prestressed Concrete Members (프리텐션 프리스트레스트 콘크리트 부재의 정착길이 정가)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.115-121
    • /
    • 2008
  • By bond mechanism between the prestressing strand and the concrete surrounding it, the effective force of prestressing must be transferred to the concrete entirely. The distance required to transfer the effective force of prestressing is called the transfer length, and the development length is the bond length required to anchor the strand as it resists external loads on the member. Transfer length was determined from the concrete strain profile at the level of the strands at transfer and development length was determined from various external loading lengths and compared with current code equation. Through the test results, bond failure is predicted based on the distress caused by cracks when they propagate within the transfer zone of prestressing strand. The current code equation was found to be conservative in comparison with the measured value.

Bonding Characteristics of Basalt Fiber Sheet as Strengthening Material for Railway Concrete Structures (Basalt 섬유쉬트의 철도시설 콘크리트구조물 보강재로서의 부착거동 연구)

  • Park, Cheol-Woo;Sim, Jong-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.641-648
    • /
    • 2009
  • Concrete structures become more common in railway systems with an advancement of high speed train technologies. As the service life of concrete structures increases, structural strengthening for concrete structures may be necessary. There are several typical strengthening techniques using steel plate and fiber reinforced polymer (FRP) materials, which have their own inherent shortcomings. In order to enhance greater durability and resistance to fire and other environmental attacks, basalt fiber material attracts engineer's attention due to its characteristics. This study investigates bonding performance of basalt fiber sheet as a structural strengthening material. Experimental variables include bond width, length and number of layer. From the bonding tests, there were three different types of bonding failure modes: debonding, rupture and rip-off. Among the variables, bond width indicated more significant effect on bonding characteristics. In addition the bond length did not contribute to bond strength in proportion to the bond length. Hence this study evaluated effective bond length and effective bond strength. The effective bond strength was compared to those suggested by other researches which used different types of FRP strengthening materials such as carbon FRP.

Effective Bond Length of FRP Sheets Externally Bonded to Concrete

  • Ben Ouezdou, Mongi;Belarbi, Abdeldjelil;Bae, Sang-Wook
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.127-131
    • /
    • 2009
  • Strengthening and repair of concrete structures using externally bonded fiber reinforced polymer (FRP) composite sheets has been popular around the world during the last two decades. However, premature failure due to debonding of the FRP is one of the important issues still to be resolved. Numerous research studies have dealt with the debonding problem in terms of Effective Bond Length (EBL), however, determination of this length has not yet been completely assessed. This paper summarizes previous works on the EBL and proposes a new relationship of the EBL with the FRP stiffness based on the existing experimental data collected in this study.

Verification of Parameters Influencing Bond Strength between Fiber-Reinforced Polymer Laminates and Concrete (연속섬유(FRP)시트와 콘크리트의 부착강도 영향 요인 검증)

  • Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.414-423
    • /
    • 2020
  • Fiber-reinforced polymer (FRP) laminate sheets, which are lightweight with high strength, are commonly used to reinforce concrete structures. The bonding strength is vital in structural design. Therefore, experiments and analytical studies with differing variables (concrete compressive strength and tensile strength, the elastic modulus of concrete and FRP, thickness of concrete and FRP, width of concrete and FRP, bond length, effective bond length, fracture energy, maximum bond stress, maximum slip) have been conducted to obtain an accurate numerical model of the bond strength between an FRP sheet and concrete. Although many models have been proposed, no validated model has emerged that could be used easily in practice. Therefore, this study analyzed the parameters that influence the bond strength that were used in 23 of the proposed models (Khalifa model, Iso model, Maeda model, Chen model, etc.) and compared them to the test results of 188 specimens via the numerical results of each model. As a result, an easy-to-use practical model with a simple and high degree of expression was proposed based on the Iso model combined with the effective bond length model that was proposed by Holzenkӓmpfer.

Experimental Study by Single and Double Face Shear Test of Bond Ability between Carbon Fiber Reinforced Plate and Concrete. (1면과 2면 인장전단 실험 방법에 따른 부착성능에 관한 실험적 연구)

  • Kang Dae Eon;Woo Hyun Su;Choi Ki Sun;Yang Won Jik;You Young Chan;Yi Waon Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.315-318
    • /
    • 2005
  • The objective of this study is to find out discrepancy in ability of bond behavior between Carbon fiber-reinforced polymer(CFRP Plate) and concrete by method of experiment. For the objective, single and double face shear test were tested. From the experimental results, it was analyzed bond strength of FRP to concrete, distribution of stress and strain of FRP. The bond strength and the effective bond length was evaluated by the theory of existing studies. Effective bond length of single face test was smaller than it of double face test.

  • PDF

An Experimental Test for the Development Length of Domestic Seven-wire Prestressing Strands (사점재하 보시험에 의한 국내산 7연상선의 전체정착길이 실험)

  • 김대훈;유승룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.393-398
    • /
    • 1999
  • The main objective of this project is to define the ultimate bond performance of domestic prestressing strands in the precast prestensioned concrete beams. Eight specimens from four different companies were fabricated and tested in this study. Four-point loading tests were performed on the beams of domestic strands with an arbitrary anchorage length. The research has shown, that all seven specimens except one failed in bond are capable of developing their full flexural capacity and the strands within them are fully anchored even with the sudden transfer of frame cutting. Following results are summarized from the tests conducted. 1) All of the specimens are tested at an embedment lengths much shorter than those required by the ACI code, failed in flexure except one failed in bond. 2) It seems that the beam depth can not be an effective variable to estimate the bond length within these sections and length of specimens on this tests. 3) The development length with the stirrup space which are considered for correction factors in the equations of Russel and Paulsgrove, is fully accurate to determine the required length for the beam tested in this research.

  • PDF

Experimental Observation on Bond-Slip Behavior between Concrete and CFRP Plate

  • Yang, Dong-Suk;Hong, Sung-Nam;Park, Sun-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • This paper discusses the failure mode of reinforced concrete beams strengthened with composite materials based on six experimental set-ups to determine the FRP-to-concrete bond strength. Interfacial bond behavior between concrete and CFRP plates was discussed. Shear test were performed with different concrete compressive strengths (21 MPa and 28 MPa) and different bonding length (100 mm, 150 mm, 200 mm, and 250 mm). Shear test results indicate that the effective bond length (the bond length beyond which the ultimate load does not increase) was estimated as $196{\sim}204\;mm$ through linear regression analysis. Failure mode of specimens occurred due to debonding between concrete and CFRP plates. Maximum bond stress is calculated as about $3.0{\sim}3.3\;MPa$ from the relationships between bond stress and slip. Finally, the interfacial bond-slip model between CFRP plates and concrete, which is governed debonding failure, has been estimated from shear tests. Average bond stress was about $1.86{\sim}2.04\;MPa$, the volume of slip between CFRP plate and concrete was about $1.45{\sim}1.72\;mm$, and the fracture energy was found to be about $1.35{\sim}1.71\;N/mm$.

Bond & Lapped Splices in High-Strength Concrete Structures (고강도 콘크리트 구조물의 철근 부착 및 이음에 대한 연구)

  • 김준성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.122-130
    • /
    • 1997
  • An experimental study was conducted to evaluate the bond performance of reinforcing bars embedded in high-strength concrete. Four bond specimens and ten beam splice specimens using concrete with compressive strength of 246kgf/$cm^2$ and 64lkgf/$cm^2$ were tested. The effect of several variables on basic development length and compressive strength of concrete is discussed in splice specimens. The test results showed that the current trend in concrete specification of making the splice length longer to compensate for having smaller cover and spacing may not be an effective approach.

  • PDF