• Title/Summary/Keyword: effect of stiffener

Search Result 119, Processing Time 0.031 seconds

Effect of joint Details on Fatigue Properties of a Slot Structure

  • Youn, J.G.;Kim, H.S.;Park, D.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 2001
  • Effect of the joint details on the stress distribution over a slot structure has been studied in order to improve its fatigue life using a finite element analysis. The joint details of interest are the radius and height of scallop at the stiffener as well as the mis-alignment between the stiffener and longitudinal member. For a slot structure currently used, the stiffener heel is subjected to the maximum stress for a given external load, where is a potential fatigue crack initiation site. The stresses at the stiffener heel and toe decrease both by increasing the scallop radius and more significantly by increasing the mis-alignment while no notable effect of the scallop height on it is appreciated. A proper combination of these factors makes it possible to reduce the stresses at the stiffener heel and In, theoretically, more than 50%. This is attributed to the modification of the stress distribution over the slot structure including the transition of the maximum stressed region from the stiffener heel to the slot surface of the transverse web. Such then results in a g[eat improvement of the fatigue life of the slot structure.

  • PDF

Analysis of stiffened Al/SiC FGM plates with cutout under uniaxial and localized in-plane edge loadings

  • P. Balaraman;V.M. Sreehari
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.601-615
    • /
    • 2024
  • Effect of ring and straight stiffeners in the buckling as well as vibration characteristics of metal-ceramic functionally graded plates with cutout subjected to various uniaxial and localized in-plane compressive edge loadings was explored in the present work. In the current work, the distinguishing characteristics of metal and ceramic are merged in a single volume, and power law was used for estimating the material composition throughout thickness. Buckling and free vibration characteristics were studied initially for unstiffened Al/SiC functionally graded plates with cutout. Subsequently, the influence of cutout ratio on buckling load as well as natural frequency for different power law indices was discussed. The functionally graded plate was stiffened by three different stiffener patterns, namely; ring stiffener, straight stiffener, as well as a combination of the ring and the straight stiffener, to enhance the buckling as well as vibration characteristics. The effect of stiffener depth ratio for different stiffener patterns was also presented for functionally graded plates having different cutout sizes under various loading conditions. Such studies on functionally graded material have potential applications in a variety of technological fields including the aerospace and defense sectors.

An Experimental Study on the Reinforcement Effect of Installed composite stiffener on Earth Retaining Walls using Stabilizing Piles (억지말뚝 흙막이공법에 설치된 복합버팀의 보강효과에 관한 실험적 연구)

  • Kim, Tae-Hyo;Im, Jong-Chul;Park, Lee-Keun;Kwon, Joung-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1224-1239
    • /
    • 2008
  • The earth retaining walls using stabilizing piles can be applied to shallow excavation works without any stiffener. But, It demends a variety of installed composite stiffener on the earth retaining walls when it is installed as deep excavation works. Because, it causes an excessive displacement of walls. This research tried to overcome the problems created by the above issues and intended to apply the composite stiffener. The model test, focused on the effect of installed composite stiffener, measured the bending stress with stabilizing piles and walls, the settlement of earth surface, the displacement of walls for a step excavation and an increase in strip load. With the test results and soil deformation analysis, the reinforcement effect(relating to control displacement and earth presure) was analyzed in a qualitative and quantitative manner. It is expected to overcome a deep excavation works.

  • PDF

Evaluation of Installation and Arrangement Effects of Internal Ring Stiffener for Tubular K-joints with Axially Loaded Braces (지부재에 축하중을 받는 K형 관이음부의 내부 환보강재의 설치 및 배치효과 평가)

  • Cho, Hyun-Man;Ryu, Yeon-Sun;Lim, Dong-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.267-274
    • /
    • 2011
  • The effect of internal ring stiffeners is numerically evaluated for reinforcement of tubular K-joints. Finite element analyses are performed to compute stress of un-stiffened and ring-stiffened K-joints subjected to axial loading. The influence of loading condition and geometrical parameters of ring stiffener on joint behavior is assessed to determine the installation effect of single and double ring stiffeners. The arrangement effect of ring stiffener are evaluated using quantitative analysis compared single ring with double ring stiffeners. Based on the numerical results, practical size of ring stiffener is proposed for design of tubular K-joints.

Effect of stiffened element and edge stiffener in strength and behaviour of cold formed steel built-up beams

  • Manikandan, P.;Sukumar, S.
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.207-220
    • /
    • 2016
  • The aim of this study is to investigate the effect of stiffened element and edge stiffener in the behaviour and flexural strength of built-up cold-formed steel beams. An experimental and analytical analysis of CFS channel sections in four different geometries is conducted, including simple channel sections, a stiffened channel section with or without edge stiffeners. Nonlinear finite element models are developed using finite element analysis software package ANSYS. The FEA results are verified with the experimental results. Further, the finite element model is used for parametric studies by varying the depth, thickness, and the effect of stiffened element, edge stiffener and their interaction with compression flanges on stiffened built-up cold-formed steel beams with upright edge stiffeners. In addition, the flexural strength predicted by the finite element analysis is compared with the design flexural strength calculated by using the North American Iron and Steel Institute Specifications for cold-formed steel structures (AISI: S100-2007) and suitable suggestion is made.

Axial Strength Evaluation for Tubular T-Joints with Internal Ring Stiffener (환보강재를 가진 T형 관이음부의 축방향 강도 평가)

  • 조현만;류연선;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.269-276
    • /
    • 2001
  • Tubular structures are widely used for offshore platforms and truss type structures. In this paper, nonlinear finite element analysis is used to assess the static strength of stiffened tubular T-joints subjected to compressive brace loading. This joints was modelled with and without internal ring stiffener According to variation of ring geometries, the effect of ring stiffener for T-joints are investigated. Internal ring stiffener is found to be efficient improving ultimate strength of tubular joints. Relations of ring thickness and axial strength are observed considering geometric parameters of ring stiffeners.

  • PDF

A Study on the Buckling Behavior of the Web of Box Girders (상자형 복부판의 좌굴 거동에 관한 연구)

  • Lee, Sang Woo;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.37-49
    • /
    • 1997
  • The buckling behavior of the web of steel girders are largely dependent on the size and the location of stiffeners and the restraining effect of top and bottom flanges. Elastic and inelastic buckling analyses based or the Spline Finite Strip Method were executed to study the stiffening effect of the longitudinal stiffener on the web of box girders and to find how the top and bottom flanges had effects on the web, where geometric boundary conditions were limited by both hinged, both fixed and the flange sections. The basic assumption for the longitudinal end boundary conditions was that the vertical stiffeners had the rigidity enough to force nil deflection line on the web panel so that the junction line between web and vertical stiffener was assumed to be hinged boundary conditions. The provisions on the longitudinal stiffener of the plate and box girders of the Korean Standard Highway Bridge Specifications(1995) and AASHTO Specifications(1994 LRFD) were compared with the results obtained numerically for the various longitudinal stiffener size of box girders. Simple equations and design curves for the longitudinal stiffener of the web were proposed for the practical use.

  • PDF

A Study on the Stiffener of the Watertight Bulkhead of the Fishing Boat. (강제어선(鋼製漁船)의 수밀격벽(水密隔璧) 방요재(防撓材)에 관(關)한 연구(硏究))

  • Chang-Yull,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.3-8
    • /
    • 1965
  • The objects of this paper are to stimulated discussion of the criteria used for deciding the scantling of watertight bulkhead stiffener of steel fishing boats ranged of length of 20 meters to 80 meters and to suggest a method of calculation based on beam theory. Present knowledge is examined and it appears that failure of a bulkhead stiffener is comparatively rare. Regarding its structure bulkhead does not contribute on longitudinal strength of a ship. The strength of a bulkhead stiffener can be treated locally. Assuming bulkhead stiffeners are free ends and fixed ends theoretical required section modulus are calculated and compared with classification societies' rule. Welding effect of a bulkhead stiffener to bulkhead plate and a bracket to stiffener and deck plate are considered. On various conditions of joints are suggested.

  • PDF

Strength Evaluation Formulae for Ring-Stiffened Tubular X-Joints (내부 환보강 X형 관이음부의 강도산정식)

  • 조현만;류연선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.61-68
    • /
    • 2002
  • Tubular members have been applied in a wide range of frame structures including offshore structures. For the efficient load flow in tubular-member structures, the joints of tubular members are usually reinforced using internal ring stiffener for the steel tubular joint having a large diameter. The objective of this paper is to numerically assess the behavior of X-joints with an internal ring stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. From the numerical results, internal ring stiffener is found to be efficient in improving static strength of tubular X-joints. Maximum strength ratios are calculated as 1.5~3.5, and the effective dimensions of ring stiffener are found. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae are proposed.

  • PDF

Influence of stiffener edge on the buckling load of holed composite plates

  • Zakeri, Mahnaz;Mozaffari, Ali;Katirae, Mohamad A.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.681-688
    • /
    • 2018
  • In this paper, buckling load of edge stiffened composite plates is assessed. The effect of stiffener edge size, circular hole, and the fiber orientation angle on buckling behavior of composite plates under uni-axial compressive load is investigated. This paper includes two parts as experimental and numerical studies. L-shape composite plates are manufactured in three different layups. Then the buckling loads are experimentally determined. Subsequently, by using the numerical simulation, the size variation effects of stiffener edge and circular cutout on the plate buckling loads are analyzed in five different layups. The results show that cutout size, stiffener edge height and fiber orientation angle have important effects on buckling load. In addition, there is an optimum height for stiffener edge during different conditions.