• Title/Summary/Keyword: effect of operating conditions

Search Result 815, Processing Time 0.031 seconds

Permeation Characteristics of the Submerged Membrane Module Using the Rotating Disks (회전원판을 이용한 침지형 분리막 모듈의 투과특성)

  • Chung Kun-Yong;Cho Young-Su;Kim Jong-Pyo
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The permeation experiments were carried out for the submerged membrane module equipped with self-designed rotating disks in order to determine the effect of fouling reduction and the optimum operating conditions as a function of operating time. Kaolin and bentonite particles were used to prepare various concentrations of feed solution. Every experiment was continued until 60 minutes at various rotating disk speeds up to 120 rpm. The suction pressure for kaolin solutions decreased to 28% by using rotating disk to decrease the fouling. Also, the optimum permeation flux decreased as kaolin concentration increased, and became 60 to 70 LMH for 0.4 wt% of kaolin solution. The suction pressure for bentonite experiment approached to 0 mmHg at 30 LMH and above 80 rpm rotating disk speed.

Prediction of Venturi Effect on Pressure Drop in Pulse Air Jet Bag Filter (충격기류식 여과집진장치에서 벤츄리가 압력손실에 미치는 영향)

  • Moon-Sub Jung;Jung-Kwon Kim;Yong-Hyun Chung;Jeong-Min Suh
    • Journal of Environmental Science International
    • /
    • v.32 no.9
    • /
    • pp.659-669
    • /
    • 2023
  • The purpose of this study is to predict the pressure drop due to the installation of venturi under diverse operating conditions such as dust concentration, pulse interval and pressure, and filtration velocity using algebraic-linear regression model and use it as an economic data and efficient operating condition for a pulse air jet bag filter. A pilot scale bag filter with a filter a filter size(Ø140 × 850ℓ, 12) was used, and the filters used in the experiment were the polyester filters most commonly used in real industrial sites. The SAS 9.4 program (SAS Institute, USA) was used to predict and to determine the effects of inlet concentration (Ci), pulse interval (Pi) and pressure (Pp), filtration velocity (Vf), presence or absence of venturi, etc. The results are shown below. The variation in pressure drop with or without venturi installation was 38.8 mmAq when venturi is installed and 47.6 mmAq when venturi is not installed, indicating a difference in pressure drop of 8.8 mmAq depending on venturi installation. It is estimated that the efficiency can be improved by about 18.5% if the venturi is installed.

Performance characteristics of the Coil Deposition Type Heat Pump using Geothermal Energy (지열을 이용한 코일 침적형 히트펌프의 성능 특성)

  • Oh, Hoo-Kyu;Lee, Dong-Gun;Jeon, Min-Ju;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.437-444
    • /
    • 2012
  • This paper describes the experimental characteristics on cooling and heating performance of the coil deposition type heat pump using geothermal energy to optimize the design for the operating parameters of this system. The operating parameters considered in this study include subcooling degree, evaporation and condensation temperature in the coil deposition type heat pump using geothermal energy. The main results are summarized as follows : As the evaporation temperature and subcooling degree of the coil deposition type heat pump using geothermal energy increases, and the condensation temperature decreases, the COP of this system increases. The subcooling degree, evaporation and condensation temperature of the coil deposition type heat pump have an effect on cooling and heating COP of this heat pump. Therefore, it is a necessary to determine the optimum operation conditions for the highest COP of this heat pump presented in this study.

Investigation of Turbulent Flow Effect in Segmented Arc Heater (아크히터 내부의 난류 효과에 대한 고찰)

  • Lee, Jeong-Il;Kim, Kyu-Hong;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2005
  • Flows in segmented arc-heaters have been calculated for prediction of experimental operating condition or for analysis and design of arc-heater itself. Some researchers succeeded in calculating accurately inner flows of a arc-heater, but could not made mathematical models which satisfy various operating conditions for many arc-heaters. this study is forced on turbulence for the generality of mathematical model. Instead of algebraic turbulence models which are frequently used for calculating inner flow of arc-heater, two equation turbulent models are used. Prediction results agree well with experiment data and it was confirmed that $k-\varepsilon$ two equation turbulence model is appropriate for a flow in an arc heater throughout extensive numerical testing.

Overcoming the Braess' Paradox in Feasibility Study (경제성 분석의 브레이스 파라독스 극복 방안)

  • Park, Kyung-Chul;Ryu, Si-Kyun;Lee, Sung-Mo;Son, Sang-Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.103-112
    • /
    • 2008
  • In the feasibility analysis, Braess' Paradox results in the negative social benefit in spite of adding transportation facilities. Consequently, it has been difficult to judge on the investment of SOC projects. This research aims to analyze the Braess' Paradox in the feasibility analysis and to seek a remedy for the Paradox. Several experiments were conducted on the simple network under the various conditions. From the experiments, following findings were validated: Braess' Paradox occurred only if travel demands met within certain intermediate range. In terms of traffic assignment method, the SO was more likely to reduce the effect of the Braess' Paradox than the UE. However, the Braess' Paradox in the benefit of operating cost saving occurred in all cases and the paradox in the total benefit continued. In order to solve the problem, new link cost function considered travel time and operating cost simultaneously were suggested. As a result, the negative benefit was significantly decreased in the UE case and total negative benefit was no longer shown in the SO case through the analysis.

Continuous Production of Fish Skin Gelatin Hydrolysate Using a Two-Stage Membrane Ractor (2단계 막반응기를 이용한 어피젤라틴 가수분해물의 연속적 생산)

  • Kim, Se-Kwon;Byun, Hee-Guk;Jeon, You-Jin;Yang, Hyun-Phil;Jou, Duk-Je
    • Applied Biological Chemistry
    • /
    • v.37 no.2
    • /
    • pp.130-141
    • /
    • 1994
  • A continuous two-stage membrane (1st-SCMR, MWCO 10,000; 2nd-SCMR, MWCO 5,000) reactor was developed and optimized for the production of fish skin gelatin hydrolysate with different molecular size distribution profiles using trypsin and pronase E. The optimum operating conditions in the 1st-step membrane reactor using trypsin were: temperature, $55^{\circ}C$ ; pH 9.0; enzyme concentration, 0.1 mg/ml; flux, 6.14 ml/min; reaction volume, 600 ml; and the ratio of substrate to trypsin, 100 (w/w). After operating for 1 hr under the above conditions, 79% of total amount of initial gelatin was hydrolysed. In the 2nd-step using pronase E under optimum operating conditions[temperature, $50^{\circ}C$ ; pH 8.0; enzyme concentration, 0.3 mg/ml; flux, 6.14 ml/min; reaction volume, 600 ml; and the ratio of substrate to pronase E, 33 (w/w)], the 1st-step hydrolysate was hydrolysed above 80%. Total enzyme leakages in the 1st-step and 2nd-step membrane reactors were about 11.5% at $55^{\circ}C$ for 5hrs and 9.0% at $50^{\circ}C$ for 4 hrs, respectively. However, there was no apparent correlation between enzyme leakage and substrate hydrolysis. The membrane has a significant effect on activity lose of trypsin and pronase E activity for 1 hr of the membrane reactors operation. The loss of initial activity of enzymes were 34% and 18% in the 1st-step and 2nd-step membrane reactor, whereas were 23% and 10% after operating time 3 hr in the 1st-step and 2nd-step membrane reactor lacking the membrane, respectively. The productivities of 1st-step and 2nd-step membrane reactor for 8 times of volume replacement were 334 mg and 250 mg per mg enzyme, respectively.

  • PDF

The effect of operating telematics device in vehicle on driver behaviors (운전중 텔레매틱스 장치 사용이 운전행동에 미치는 영향)

  • Sihn, Yong-Kyun;Ryu, Jun-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.6
    • /
    • pp.39-47
    • /
    • 2008
  • With dramatic development of IT technology and start of DMB service, installing the DMB equipment in a vehicle for watching TV programs and literal or pictorial traffic information are increasing. Watching the DMB during driving the vehicle could cause visual and cognitive distraction to drivers as much as eating food, operating radio and using mobile phone. However, there is not much empirical research for this topic and no research examined the effect of watching the DMB on driving behaviors in Korea. So, the present study examined the effect of watching the DMB on the driving behaviors with car simulator experiment. Within subject design was used in the study. That is, all subjects drove the vehicle both in the watching DMB condition and the non-watching DMB condition. The results indicated that subjects in the watching DMB condition took longer time to arrive at the destination and operated accelerator and brake pedal rapidly than subjects in the non-watching DMB condition. That is, their overall driving stability was lower than non-watching subjects'. Additionally, we examined the difference among the DMB control conditions (i.e., keypad condition, touch-pad condition and remote controller condition) in the driving behaviors. Finally, we discussed the limitations and the implications of the present study.

A numerical study of scale effects on performance of a tractor type podded propeller

  • Choi, Jung-Kyu;Park, Hyoung-Gil;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.380-391
    • /
    • 2014
  • In this study, the scale effect on the performance of the podded propeller of tractor type is investigated. Turbulent flow computations are carried out for Reynolds numbers increasing progressively from model scale to full scale using the CFD analysis. The result of the flow calculation for model scale Reynolds numbers agrees well with that of the experiment of a large cavitation tunnel. The existing numerical analysis indicates that the performance of the podded propeller blades is mainly influenced by the advance coefficient and relatively little by the Reynolds number. However, the drag of pod housing with propeller in operation is different from that of pod housing without propeller due to the acceleration and swirl of propeller slipstream which is altered by propeller loading as well as the pressure recovery and friction according to Reynolds number, which suggests that the pod housing drag under the condition of propeller in operation is the key factor of the scale effect on the performance between model and full scale podded propellers. The so called 'drag ratio', which is the ratio of pod housing drag to total thrust of podded propeller, increases as the advance coefficient increases due to accelerated flow in the slipstream of the podded propeller. However, the increasing rate of the drag ratio reduces continuously as the Reynolds number increases from model to full scale progressively. The contribution of hydrodynamic forces, which acts on the parts composed of the pod housing with propeller operating in various loading conditions, to the thrust and the torque of the total propeller unit are presented for a range of Reynolds numbers from model to full scales.

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

The Effects of Fuel Temperature on the Spray and Combustion Characteristics of a DISI Engine (직접분사식 가솔린 엔진에서 연료 온도에 따른 팬형 분무 및 연소 특성의 변화)

  • Moon, Seok-Su;Abo-Serie, Essam;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.103-111
    • /
    • 2006
  • The spray behavior of direct-injection spark-ignition(DISI) engines is crucial for obtaining the required mixture distribution for optimal engine combustion. The spray characteristics of DISI engines are affected by many factors such as piston bowl shape, air flow, ambient temperature, injection pressure and fuel temperature. In this study, the effect of fuel temperature on the spray and combustion characteristics was partially investigated for the wall-guided system. The effect of fuel temperature on the fan spray characteristics was investigated in a steady flow rig embodied in a wind tunnel. The shadowgraphy and direct imaging methods were employed to visualize the spray development at different fuel temperatures. The microscopic characteristics of spray were investigated by the particle size measurements using a phase Doppler anemometry(PDA). The effect of injector temperature on the engine combustion characteristics during cold start and warming-up operating conditions was also investigated. Optical single cylinder DISI engine was used for the test, and the successive flame images captured by high speed camera, engine-out emissions and performance data have been analyzed. This could give the way of forming the stable mixture near the spark plug to achieve the stable combustion of DISI engine.