• Title/Summary/Keyword: edible composite films

Search Result 5, Processing Time 0.017 seconds

Relationship between Moisture Barrier Properties and Sorption Characteristics of Edible Composite Films

  • Ryu, Sou-Youn;Rhim, Jong-Whan;Lee, Won-Jong;Yoon, Jung-Ro;Kim, Suk-Shin
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • Moisture sorption characteristics of edible composite films were determined and compared against moisture barrier properties. Edible composite films were Z1 (zein film with polyethylene glycol(PEG) and glycerol), Z2 (zein film with oleic acid), ZA1 (zein-coated high amylose corn starch film with PEG and glycerol), and ZA2 (zein-coated high amylose corn starch film with oleic acid). Z2 film showed the lowest equilibrium moisture content (EMC), monolayer value ($W_m$), water vapor permeability (WVP), and water solubility (WS). Surface structure of Z2 was relatively denser and finer than that of other edible films. GAB $W_m$ and C values decreased, while K values increased with increasing temperature. Correlation coefficients of WS:EMC and WVP:EMC at Aw 0.75 were higher than those of WS: $W_m$ and WVP: $W_m$, respectively. EMC values at Aw 0.75 appeared useful for evaluating or predicting moisture barrier properties of edible films.

Development of Edible Laminate-Composite Films Using Defatted Mustard Meal and Whey Protein Isolate (탈지겨자씨와 유청단백질을 재료로 사용한 가식성 적층필름의 개발)

  • Kim, Dayeon;Park, Ji Won;Noh, Bong-Soo;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.711-715
    • /
    • 2012
  • A laminate-composite film was developed using industry co-products of defatted mustard meal (DMM) and whey protein isolate (WPI). An individually prepared DMM-based film (DMM film) and a WPI-based film (WPI film) were thermally laminated at $130^{\circ}C$ at a rate of 30 cm/min. Microscopic images exhibited that the DMM film and the WPI film were continuously attached in the laminate without void spaces. The tensile strength, elongation at break, and water vapor permeability for the laminate were 0.7MPa, 4.0%, and $6.9g{\cdot}mm/kPa/h/m^2$, respectively. Stretchability and heat seal strength of the laminate were higher than those of the un-laminated DMM film. The film layers of the laminate were physically overlapped, not forming new biopolymer units induced by molecular interactions. The opportunity for DMM films to be used as food packaging materials for wrapping and sealing could be increased by thermal lamination with WPI films, which improves the stretchability and heat sealability of DMM films.

Preparation and Physical Properties of Curdlan Composite Edible Films (Curdlan 복합 가식성 필름의 제조와 물성)

  • Han, Youn-Jeong;Roh, Hoe-Jin;Kim, Suk-Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.158-163
    • /
    • 2007
  • In this study, we prepared curdlan composite films and determined their properties in order to select the most appropriate setting methods, moisture barrier materials, and viscoelasticity enhancing materials. High set curdlan films with polyethylene glycol (PEG) showed higher tensile strength and moisture barrier properties than low set films. Films with oleic acid as a moisture barrier material had greater tensile strength, elongation and moisture barrier properties than films with acetylated monoglyceride (AMG). Lastly, films using polyisobutylene (PIB) as a viscoelasticity enhancing material showed higher elongation than films with polybutene (PB).

Effects of a Carbohydrase Mixture, Ultrasound, and Irradiation Treatments on the Physical Properties of Defatted Mustard Meal-based Edible Films (탈지 겨자씨로 제조한 가식성 생고분자 필름의 물리적 특성에 대한 탄수화물 가수분해 효소 혼합체, 초음파, 그리고 방사선 처리의 효과)

  • Yang, Hee-Jae;Noh, Bong-Soo;Kim, Jae-Hun;Min, Sea-C.
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Effects of depolymerization treatments of a carbohydrase mixture (CM), ultrasound, and irradiation on the physical properties of defatted mustard meal-based edible films (DMM films) were investigated. DMM hydrocolloids were added to CM (0.42% (w/w solution)), treated by ultrasound (500-700 W, 10-30 min) or ${\gamma}$-ray (40-100 kGy) to prepare film-forming solutions. Films were formed by drying. The CM treatment at 0.42% (w/w), pH 5.5, and 40-$50^{\circ}C$ with a 0.5 hr incubation time resulted in the highest colloidal stability in the film-forming solution. The depolymerization treatments did not dramatically change the water vapor permeability of the films. The solubility of the film decreased up to 53.1% by the CM treatment. The ultrasound treatment (700 W-30 min) decreased tensile strength and elongation. The ultrasound treatment (600 W-20 min) resulted in more compact and uniform structures of the films. Flavor profiles were differentiated by the power level and the time of the ultrasound treatment.

Physical Properties of Locust Bean Gum-Based Edible Film (Locust Bean Gum으로 제조한 가식성 필름의 물리적 특성)

  • Choi, Soo-Jin;Kim, Sang-Yong;Oh, Deok-Kun;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.363-371
    • /
    • 1998
  • Locust bean gum (LBG)-based edible film was prepared, and opacity, water vapor permeability (WVP), tensile strength (TS) and elongation (E) of the film were measured. Opacity values of the film was a little higher than that of other transparent films. WVP decreased as LBG concentration decreased. Plasticizers and drying temperature didn't seem to influence WVP. WVP of the film increased greatly at 85% RH as compared to that of 0% RH. WVP of the film seemed to increase linearly with thickness of the film. But WVP of the film was lower those of other edible films. TS increased with increase of LBG concentration, and decreased with increase of glycerol concentration. E decreased with increase of LBG concentration, and increased with increase of sorbitol concentratin. LBG-based composite films were prepared by adding agarose, k-carrageenan or xanthan gum. TS and E of the composite film with addition of k-carrageenan increased.

  • PDF