• 제목/요약/키워드: edge intelligence

검색결과 168건 처리시간 0.026초

딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로 (Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit)

  • 정여진;안성만;양지헌;이재준
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.1-17
    • /
    • 2017
  • 딥러닝 프레임워크의 대표적인 기능으로는 '자동미분'과 'GPU의 활용' 등을 들 수 있다. 본 논문은 파이썬의 라이브러리 형태로 사용 가능한 프레임워크 중에서 구글의 텐서플로와 마이크로소프트의 CNTK, 그리고 텐서플로의 원조라고 할 수 있는 티아노를 비교하였다. 본문에서는 자동미분의 개념과 GPU의 활용형태를 간단히 설명하고, 그 다음에 logistic regression을 실행하는 예를 통하여 각 프레임워크의 문법을 알아본 뒤에, 마지막으로 대표적인 딥러닝 응용인 CNN의 예제를 실행시켜보고 코딩의 편의성과 실행속도 등을 확인해 보았다. 그 결과, 편의성의 관점에서 보면 티아노가 가장 코딩 하기가 어렵고, CNTK와 텐서플로는 많은 부분이 비슷하게 추상화 되어 있어서 코딩이 비슷하지만 가중치와 편향을 직접 정의하느냐의 여부에서 차이를 보였다. 그리고 각 프레임워크의 실행속도에 대한 평가는 '큰 차이는 없다'는 것이다. 텐서플로는 티아노에 비하여 속도가 느리다는 평가가 있어왔는데, 본 연구의 실험에 의하면, 비록 CNN 모형에 국한되었지만, 텐서플로가 아주 조금이지만 빠른 것으로 나타났다. CNTK의 경우에도, 비록 실험환경이 달랐지만, 실험환경의 차이에 의한 속도의 차이의 편차범위 이내에 있는 것으로 판단이 되었다. 본 연구에서는 세 종류의 딥러닝 프레임워크만을 살펴보았는데, 위키피디아에 따르면 딥러닝 프레임워크의 종류는 12가지가 있으며, 각 프레임워크의 특징을 15가지 속성으로 구분하여 차이를 특정하고 있다. 그 많은 속성 중에서 사용자의 입장에서 볼 때 중요한 속성은 어떤 언어(파이썬, C++, Java, 등)로 사용가능한지, 어떤 딥러닝 모형에 대한 라이브러리가 잘 구현되어 있는지 등일 것이다. 그리고 사용자가 대규모의 딥러닝 모형을 구축한다면, 다중 GPU 혹은 다중 서버를 지원하는지의 여부도 중요할 것이다. 또한 딥러닝 모형을 처음 학습하는 경우에는 사용설명서가 많은지 예제 프로그램이 많은지 여부도 중요한 기준이 될 것이다.

장애물 인식 지능을 갖춘 자율 이동로봇의 구현 (Implementation of a Self Controlled Mobile Robot with Intelligence to Recognize Obstacles)

  • 류한성;최중경
    • 대한전자공학회논문지SP
    • /
    • 제40권5호
    • /
    • pp.312-321
    • /
    • 2003
  • 본 논문은 장애물을 인식하고 회피하면서 목적지까지 자율적으로 이동할 수 있는 로봇을 구현한 논문이다. 우리는 본 논문에서 영상처리보드의 구현이라는 하드웨어적인 부분과 자율 이동로봇을 위한 영상궤환 제어라는 소프트웨어의 두 가지 결과를 나타내었다. 첫 번째 부분에서, 영상처리를 수행하는 제어보드로부터 명령을 받는 로봇을 나타내었다. 우리는 오랫동안 CCD카메라를 탑재한 자율 이동로봇에 대하여 연구해왔다. 로봇의 구성은 DSP칩을 탑재한 영상보드와 스텝모터 그리고 CCD카메라로 구성된다. 시스템 구성은 이동로봇의 영상처리 보드에서 영상을 획득하고 영상처리 알고리즘을 수행하고 로봇의 이동경로를 계산한다. 이동로봇에 탑재된 CCD카메라에서 획득한 영상 정보는 매 샘플링 시간마다 캡쳐한다. 화면에서 장애물의 유무를 판별한 후 좌 혹은 우로 회전하여 장애물을 회피하고 이동한 거리를 Feedback하는 시스템을 구현하여 초기에 지정한 목표지점가지 로봇이 갈 수 있도록 간략한 경로를 계획하여 절대좌표를 추적해 나가는 알고리즘을 구현한다. 이러한 영상을 획득하고 알고리즘을 처리하는 영상처리 보드의 구성은 DSP (TMS320VC33), ADV611, SAA7111, ADV7176A, CPLD(EPM7256ATC144), SRAM 메모리로 구성되어 있다. 두 번째 부분에서는 장애물을 인식하고 회피하기 위하여 두 가지의 영상궤환 제어 알고리즘을 나타낸다. 첫 번째 알고리즘은 필터링, 경계검출 NOR변환, 경계치 설정 등의 영상 전처리 과정을 거친 영상을 분할하는 기법이다. 여기에서는 Labeling과 Segmentation을 통한 pixel의 밀도 계산이 도입된다. 두 번째 알고리즘은 위와 같이 전처리된 영상에 웨이브렛 변환을 이용하여 수직방향(y축 성분)으로 히스토그램 분포를 20 Pixel 간격으로 스캔한다. 파형 변화에 의하여 장애물이 있는 부분의 히스토그램 분포는 거의 변동이 없이 나타난다. 이러한 특성을 분석하여 장애물이 있는 곳을 찾아내고 이것을 회피하기 위한 알고리즘을 세웠다. 본 논문은 로봇에 장착된 한 개의 CCD 카메라를 이용하여 장애물을 회피하면서 초기에 설정해둔 목적지가지 도달하기 위한 알고리즘을 제안하였으며, 영상처리 보드를 설계 및 제작하였다. 영상처리 보드는 일반적인 보드보다 빠른 속도(30frame/sec)와 해상도를 지원하며 압축 알고리즘을 탑재하고 있어서 영상을 전송하는 데에 있어서도 탁월한 성능을 보인다.

의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰 (The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective)

  • 최영석;박진수
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.111-123
    • /
    • 2013
  • 개념간의 의미적 유사도 및 관계도(Semantic Similarity/Relatedness)를 구하는 연구는 고전적인 연구에서는 데이터 베이스 통합이나 시스템 통합, 그리고 현대의 연구에 있어서는 태그 및 키워드 추출, 연관 단어 추천 등에 걸쳐 다양한 분야에서 활용되어 온 연구이다. 그 연구는 역사가 오래되었을 뿐만 아니라, 경영정보와 컴퓨터 공학, 계산 언어학에 걸쳐 여러 분야에서도 많은 관심을 가져왔던 연구 분야라고 할 수 있다. 그러나, 지금까지의 개념간의 관계도 계산 방식은 미리 만들어진 사전이나 참조할 수 있는 다른 시맨틱 네트워크(Semantic Network)를 이용하여 계산하는 방법이 주를 이루었다. 이러한 접근 방법의 경우, 개념간의 의미적 관계가 변화에 대한 가능성을 고려하지 않는 것이 일반적이다. 하지만, 정보 기술의 발달과 빠른 사회변화는 개념간의 의미관계 등에 변화를 가져오고 있는 것이 현실이다. 사회적으로 일어나는 사건이나, 문화적 변화 등이 개념간의 의미관계를 변화시키는 것을 물론이며, 이러한 변화가 정보 통신 기술의 도움으로 빠르게 공유되고 있다. 이렇게 개념간의 의미 관계가 시간이나 맥락에 따라 빠르게 변화할 수 있는 가능성이 있음에도 불구하고, 기존의 개념간 의미적 유사도 및 관계도에 대한 연구들은 이러한 '의미관계의 변화'에 대한 새로운 문제에 대해 해답을 제시하지 못한 것이 사실이다. 따라서, 본 연구에서는 개념간의 유사도 연구에 있어 지금까지 있어왔던 '정적인 의미간 관계도 패러다임'에서 '동적인 의미간 관계도 패러다임'으로의 전환의 필요성과 그 당위성을 인지 의미론적(Cognitive Semantics)의 관점에서 역설하고자 한다. 인간이 인지하는 개념간의 의미관계가 변화할 수 있는 이론적 근거를 인지 의미론에서 찾아봄으로써, 패러다임 변화의 방향을 구체적으로 제시하였다. 또한 이러한 패러다임의 변화에 맞추어 개념간의 의미적 유사도 및 관계도에 대한 연구가 어떠한 방향으로 나아가야 할지 구체적인 연구 방향을 제시함으로써 관련 연구자들에게 새로운 연구의 가이드라인을 제시하였다.

네트워크 분석을 활용한 딥러닝 기반 전공과목 추천 시스템 (Major Class Recommendation System based on Deep learning using Network Analysis)

  • 이재규;박희성;김우주
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.95-112
    • /
    • 2021
  • 대학 교육에 있어서 전공과목의 선택은 학생들의 진로에 중요한 역할을 한다. 하지만, 산업의 변화에 발맞춰 대학 교육도 학과별 전공과목의 분야가 다양해지고 그 수가 많아지고 있다. 이에 학생들은 본인의 진로에 맞게 수업을 선택하여 수강하는 것에 어려움을 겪고 있다. 본 연구는 대학 전공과목 추천 모델을 제시함으로써 개인 맞춤형 교육을 실현하고 학생들의 교육만족도를 제고하고자 한다. 모델 연구에는 대학교 학부생들의 2015년~2017년 수강 이력 데이터를 활용하였으며, 메타데이터로는 학생과 수업의 전공 명을 사용했다. 수강 이력 데이터는 컨텐츠 소비 여부만을 나타낸 암시적 피드백 데이터로, 수업에 대한 선호도를 반영한 것이 아니다. 따라서 학생과 수업의 특성을 나타내는 임베딩 벡터를 도출했을 시, 표현력이 낮다. 본 연구는 이러한 문제점에 착안하여, 네트워크 분석을 통해 학생, 수업의 벡터를 생성하고 이를 모델의 입력 값으로 활용하는 Net-NeuMF 모델을 제시한다. 모델은 암시적 피드백을 가진 데이터를 이용한 대표적인 모델인 원핫 벡터를 이용하는 NeuMF의 구조를 기반으로 하였다. 모델의 입력 벡터는 네트워크 분석을 통해 학생과 수업의 특성을 나타낼 수 있도록 생성하였다. 학생을 표현하는 벡터를 생성하기 위해, 각 학생을 노드로 설정하고 엣지는 두 학생이 같은 수업을 수강한 경우 가중치를 가지고 연결되도록 설계했다. 마찬가지로 수업을 표현하는 벡터를 생성하기 위해 각 수업을 노드로 설정하고 엣지는 공통으로 수강한 학생이 있는 경우 연결시켰다. 이에 각 노드의 특성을 수치화 하는 표현 학습방법론인 Node2Vec을 이용하였다. 모델의 평가를 위해 추천 시스템에서 주로 활용하는 지표 4가지를 사용하였고, 임베딩 차원이 모델에 미치는 영향을 분석하기 위해 3가지 다른 차원에 대한 실험을 진행하였다. 그 결과 기존 NeuMF 구조에서 원-핫 벡터를 이용하였을 때보다 차원과 관계없이 평가지표에서 좋은 성능을 보였다. 이에 본 연구는 학생(사용자)와 수업(아이템)의 네트워크를 이용해 기존 원-핫 임베딩 보다 표현력을 높였다는 점, 모델을 구성하는 각 구조의 특성에 맞도록 임베딩 벡터를 활용하였다는 점, 그리고 기존의 방법론에 비해 다양한 종류의 평가지표에서 좋은 성능을 보였다는 점을 기여점으로 가지고 있다.

소비자 가치기반 디자인 평가 모형: 제품 속성, 인지 속성, 소비자 가치의 3단계 접근 (Design Evaluation Model Based on Consumer Values: Three-step Approach from Product Attributes, Perceived Attributes, to Consumer Values)

  • 김건우;박도형
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.57-76
    • /
    • 2017
  • 최근 정보 기술의 발전 속도가 매우 빠르게 변화하고 있다. 스마트폰과 태블릿 같은 IT 기기에서 이런 변화들이 두드러지고 있다. 이전의 IT 기기들은 기능상의 혁신과 진보를 통해 소비자들을 끌어들였지만, 현재는 IT 제품 상에서 기능상 발전과 혁신은 둔화되었다. 기능상 차별점이 줄어든 시점에서 기업들은 외관과 디자인적 측면에서 차별화를 시도하고 있다. 스마트폰의 외관적 변화를 반영하듯 소비자들도 성능보단 디자인을 스마트폰 구매의 중요 요인으로 삼고 있다. 스마트폰은 패션 아이템의 하나로 자리매김하게 되었고, 스마트폰의 디자인과 외형이 지속적으로 중요해짐에 따라 해당 제품에 대해 소비자들이 느끼는 디자인 가치가 무엇인지도 중요해졌으며, 무엇에 영향을 받는지도 중요해졌다. 소비자들이 느끼는 가치가 중요해짐에 따라 소비자들이 해당제품의 디자인에 대해 평가하는 메커니즘을 밝힐 필요성이 존재하며, 적절한 가치를 전달하기 위해 디자인을 평가할 수 있는 모형이 필요하다. 디자인과 관련한 기존 연구들은 소비자들의 인지와 가치 부분에 초점을 맞추어 연구를 하였지만, 제품 속성 자체에 대한 부분은 고려하지 않은 경향이 있으며, 제품이 갖고 있는 객관적인 속성들에 따라 소비자들의 인지가 변화하는 과정과 최종적으로 느끼는 가치에 대한 메커니즘을 밝힌 연구는 부재한 것으로 나타났다. 따라서 본 연구는 스마트폰 제품이 갖고 있는 객관적 속성인 제품 속성과 객관적 속성을 통해 느끼는 소비자들의 인지, 가치에 대해 평가할 수 있는 메커니즘을 설계하고, 이를 평가할 수 있는 3단계 디자인 평가 모형을 제시하려 한다. 3단계 디자인 평가 모형은 제품 속성, 인지 속성, 소비자 가치까지 모든 단계를 고려한 정량화된 모형으로 스마트폰 분야만이 아닌 사용자경험 분야에 전반적으로 적용 가능할 것으로 기대하며, 기업이 갖고 있는 소비자 데이터와 결합한다면, 특정 소비자층을 겨냥한 제품 생산 및 설계가 가능한 지능형 디자인 가치 평가 모형으로 발전할 수 있을 것으로 예상한다.

ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래 (Current status and future of insect smart factory farm using ICT technology)

  • 석영식
    • 식품과학과 산업
    • /
    • 제55권2호
    • /
    • pp.188-202
    • /
    • 2022
  • 최근 곤충산업은 애완곤충, 천적 등 산업에서 사료, 식용, 약용곤충으로 그 활용범위가 확대되면서 곤충 원료의 품질관리에 대한 요구가 커지고 곤충 제품의 안전성 확보에 관심이 높아지고 있다. 전세계 곤충산업 시장은 많은 소규모 농가형 기업과 소수의 대기업으로 구성되어 있으며 전통적인 수작업 사육에서 고도로 자동화되고 기술적으로 진보된 플랜트형 사육 등 다양한 기술 수준의 사육형태가 존재한다. 산업규모가 확대되는 과정에서 사육환경의 설계는 온습도, 공기질 조절과 병원체 및 기타 오염 물질의 전파를 방지하는 것은 중요한 성공 요인이 되며 사육에서 부화, 사육, 가공에 이르기까지 생산의 안전성을 유지하기 위해서 통일된 운영시스템 아래 통제된 환경이 필요하다. 따라서 곤충의 생육과 사육환경의 빅데이터화 된 데이터베이스를 기반으로 외부 환경 변화에도 안정적인 사육환경 유지가 가능하고 곤충성장에 맞추어 사육환경을 제어하며 노동력 감소와 생산성 향상을 이루기 위한 ICT 기반 곤충 스마트팩토리팜의 설계 및 운용알고리즘을 개발하는 것은 곤충산업 발전의 필수 선결조건이 되고 있다. 특히 유럽 상업용 곤충사육시설은 상당한 투자자의 관심을 받아 곤충 회사가 대규모 생산시설로 건설하고 있는데 이는 EU가 2017년 7월 물고기양식 사료원료로 곤충 단백질의 사용을 승인한 후 가능해졌으며 이를 기반으로 곤충산업의 식용, 의료 등 다른 분야도 첨단기술을 접목하는 현상이 가속화되었다. 외국 곤충산업은 주로 전세계 식품 생산량의 30%에 이르는 소비 전 폐기물이라고 불리는 식품회사의 생산과잉 원료 등을 업사이클링을 통해 재활용생태계를 형성하는데 반해 우리나라는 가정 및 가게에서 발생하는 음식물폐기물 또는 농산물 가공부산물을 주로 이용한다는 점에서 사료 수집과 영양성분 유지, 위생 등 지속가능한 산업생태계를 이루는 데 어려움을 겪고 있다. 또한, 각 곤충 종은 고유하고 특정 사육기술을 요구하고 있다는 점을 감안할 때 곤충사육자는 각기 다른 종별 접근 방식을 채택해야 하는데 대부분의 곤충기업은 여전히 소규모로 운영되며 특히 농가형 기업의 경우 지식과 경험이 도제식으로 전승되는 경우가 많아 표준화되고 규격화된 사육기술이 유지되기 어려운 반면, 일부 곤충 기업은 대규모 사육시설에 스마트 통합 제어시스템을 도입하여 먹이주기, 물주기, 취급, 수확, 청소 시스템, 가공, 품질관리, 포장 및 보관과 같은 곤충 생산과 관련된 요소가 최적화된 사육 환경과 사육프로세스로 표준화되어가는 모습을 보이고 있으며 심지어 일부 유럽기업은 AI기술로 구동되는 완전 자율 모듈식 곤충시스템으로 사육 유지관리를 하고 있는 사례도 등장하기 시작하였다. 향후 전세계 곤충산업은 공급업체로부터 알이나 작은 유충을 구입하고 곤충을 성숙시키기까지 애벌레의 비육 즉 생산원료에 중점을 두는 시스템과 알을 낳고 수확하고 유충의 초기 전처리에 이르기까지 전체 생산 과정을 다루는 시스템, 곤충 유충 생산의 모든 단계와 제분, 지방 제거 및 단백질 또는 지방 분획 등 추가 가공 단계를 다루는 대규모 생산시스템 등으로 점점 세분화할 것으로 본다. 우리나라에서도 인공지능 및 ICT 첨단기술을 활용한 곤충스마트팩토리팜 연구 및 개발 등이 가속화되고 있어 곤충이 기존 사료, 식품 뿐만 아니라 천연 플라스틱 또는 천연성형소재 등 2차산업의 탄소제로 소재로 활용할 수 있도록 특정 종 육종과정 단축이나 기능성 강화를 위한 사육제어가 가능하도록 곧 곤충 스마트팩토리팜 한국형 맞춤사육시스템이 등장할 수 있을 것으로 보이며, 특히 곤충 제품의 지속 가능성을 높이기 위해 사료 및 자원 사용에 대한 통합 소프트웨어 접근 방식을 개발하는 것에 중점을 두고 진행되고 있다.

과학기술 및 학술 연구보고서 서비스 제공을 위한 국가연구개발사업 관련 법령 입법론 -저작권법상 공공저작물의 자유이용 제도와 연계를 중심으로- (A Study on Improvements on Legal Structure on Security of National Research and Development Projects)

  • 강선준;원유형;최산;김준혁;김슬기
    • 한국기술혁신학회:학술대회논문집
    • /
    • 한국기술혁신학회 2015년도 춘계 학술대회 논문집
    • /
    • pp.545-570
    • /
    • 2015
  • 현대의 지식정보화 사회에서는 과학기술 및 학술적인 저작물은 문화적 경제적 부가가치를 창출할 것으로 기대된다. 국민의 세금이 투입된 공공기관 특히 출연(연)의 공공저작물은 지식재산권 상의 제약 혹은 국가의 안전 등에 영향이 없는 한 국민들에게 무상의 자유로운 접근과 이용을 보장해야 한다. 이러한 사회적 요구와 시대적 추세에 따라 학술정보의 오픈 엑세스 운동이 확산되어 가고 있다. 우리 정부는 NDSL, NTIS 등 과학기술정보서비스를 통하여 R&D과제 기획, 또는 관련 사업을 조정 평가할 때 중복투자를 사전에 방지할 수 있고 연구자가 R&D 관련 정보 활용을 극대화 하여 국가연구개발사업의 효율적인 관리 및 투자 효율성 향상이 가능하도록 하고 있다. 스마트폰, 태블릿 PC 등 뉴미디어의 확산은 새로운 형태의 전자적 정보서비스의 제공을 요구하고 있으며 공공기관인 출연(연) 등에서 국가연구개발사업 등으로 수행한 연구보고서 등을 과학기술정보서비스를 통해 제공하는 경우 창작자의 권리(author's right)뿐만 아니라 이용자의 권리(user's right)도 동시에 보장하는 것이 기본원칙이자 중요한 당면과제 이다. 공공기관인 출연(연)의 연구보고서는 지식재산권, 연구보안 등과 관련하여 특별한 경우가 아니고는 공익적 목적을 위해 민간에서 활용이 가능하도록 제도화 되어야 하지만 현행 관련 법령상 공공저작물의 권리처리 등 관리가 미흡하여 활용과 자유이용이 제한되고 있는 실정이다. 따라서, 국민의 세금에 의해 작성된 출연(연)의 연구보고서 및 과학기술정보서비스 부분은 공공저작물의 범주에서 선진적 유통체계 마련을 위한 법적 인프라 구축이 필요하다. 입법론과 제도개선으로는 다음과 같은 방안을 검토해야 한다. 첫 번째로 사적자치 등의 이념을 활용하여 저작재산권 귀속 가이드라인 및 계약서 표준(안)을 제시해야 한다. 둘째로 개별법률 혹은 단일 별도법률로 입법화 하는 방안이다. 오픈 엑세스를 저작권 내에 법제화 방안을 검토하고 독일의 입법례를 참조하여 공공재원의 지원을 받는 출연(연)의 연구보고서 등은 학술저작물을 작성한 저작자에게 2차적 이용권을 부여해야 한다. 단일 법률로 "학술 과학기술 연구 성과물에 대한 공공적 접근 및 이용 활성화에 관한 법률"을 제정하여 별도의 내용에 대하여 상세하고 자세한 입법을 해야 한다. 출연(연)이 수행하는 대부분의 연구사업은 국가연구개발사업 관리규정의 적용을 받으며 특히, 과학기술정보 서비스 및 연구보고서와 관련된 조항은 이미 상당부분 제도적으로 정착이 된 점 제반사항을 고려해볼 때, 저작권법과의 조화로운 입법이 필요하다. 장기적으로는 기존에 과학기술정보서비스 및 연구보고서 관련 조항을 개정하고 국가연구개발사업 관리규정을 법률로 승격시켜 저작권법상 공공저작물 자유이용 제도와 오프 엑세스 조항과 유기적으로 연계될 수 있도록 조항을 제정하는 입법방식이 바람직하다.

  • PDF

의존 구문 분석을 이용한 질의 기반 정답 추출 (Query-based Answer Extraction using Korean Dependency Parsing)

  • 이도경;김민태;김우주
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.161-177
    • /
    • 2019
  • 질의응답 시스템은 크게 사용자의 질의를 분석하는 방법인 질의 분석과 문서 내에서 적합한 정답을 추출하는 방법인 정답 추출로 이루어지며, 두 방법에 대한 다양한 연구들이 진행되고 있다. 본 연구에서는 문장의 의존 구문 분석 결과를 이용하여 질의응답 시스템 내 정답 추출의 성능 향상을 위한 연구를 진행한다. 정답 추출의 성능을 높이기 위해서는 문장의 문법적인 정보를 정확하게 반영할 필요가 있다. 한국어의 경우 어순 구조가 자유롭고 문장의 구성 성분 생략이 빈번하기 때문에 의존 문법에 기반한 의존 구문 분석이 적합하다. 기존에 의존 구문 분석을 질의응답 시스템에 반영했던 연구들은 구문 관계 정보나 구문 형식의 유사도를 정의하는 메트릭을 사전에 정의해야 한다는 한계점이 있었다. 또 문장의 의존 구문 분석 결과를 트리 형태로 표현한 후 트리 편집 거리를 계산하여 문장의 유사도를 계산한 연구도 있었는데 이는 알고리즘의 연산량이 크다는 한계점이 존재한다. 본 연구에서는 구문 패턴에 대한 정보를 사전에 정의하지 않고 정답 후보 문장을 그래프로 나타낸 후 그래프 정보를 효과적으로 반영할 수 있는 Graph2Vec을 활용하여 입력 자질을 생성하였고, 이를 정답 추출모델의 입력에 추가하여 정답 추출 성능 개선을 시도하였다. 의존 그래프를 생성하는 단계에서 의존 관계의 방향성 고려 여부와 노드 간 최대 경로의 길이를 다양하게 설정하며 자질을 생성하였고, 각각의 경우에 따른 정답추출 성능을 비교하였다. 본 연구에서는 정답 후보 문장들의 신뢰성을 위하여 웹 검색 소스를 한국어 위키백과, 네이버 지식백과, 네이버 뉴스로 제한하여 해당 문서에서 기존의 정답 추출 모델보다 성능이 향상함을 입증하였다. 본 연구의 실험을 통하여 의존 구문 분석 결과로 생성한 자질이 정답 추출 시스템 성능 향상에 기여한다는 것을 확인하였고 해당 자질을 정답 추출 시스템뿐만 아니라 감성 분석이나 개체명 인식과 같은 다양한 자연어 처리 분야에 활용 될 수 있을 것으로 기대한다.