• Title/Summary/Keyword: edge histogram

Search Result 281, Processing Time 0.034 seconds

The Study of Edge Extract Methods Using Improved Detect Mask (개선된 검출 마스크를 이용한 에지추출 방법들에 관한 연구)

  • Shin, Choong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.191-199
    • /
    • 2009
  • In this paper, the improved edge extract methods is proposed in order to extract edge. For the correct and fast detect, the binary image using the threshold value is applied for a experiment. For the experimental analysis, we compare the existing edge methods with the improved methods. Hereby, the exist methods are the sobel, robert, and prewitt. and the improved methods use the existing methods which is applied mask variations. The merits of the improved mothods have a result of a little erosion, a apparent edge. Specially, we use the grey image of medical image for the experimental analysis and then apply threshold value for a result image. After that, we acquire a apparent edge. For a quantitative analysis of the each methods, the each images was applied a histogram. As a result, we prove the merit of the improved methods using a analytical graph of the medical images.

  • PDF

A Study on Efficient FPS Game Operation Using Attention NPC Extraction (관심 NPC 추출을 이용한 효율적인 FPS 게임 운영에 관한 연구)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.63-69
    • /
    • 2017
  • The extraction of attention NPC in a FPS game has emerged as a very significant issue. We propose an efficient FPS game operation method, using the attention NPC extraction with a simple arithmetic. First, we define the NPC, using the color histogram interaction and texture similarity in the block to determine the attention NPC. Next, we use the histogram of movement distribution and frequency of movement of the NPC. Becasue, except for the block boundary according to the texture and to extract only the boundaries of the object block. The edge strength is defined to have high values at the NPC object boundaries, while it is designed to have relatively low values at the NPC texture boundaries or in interior of a region. The region merging method also adopts the color histogram intersection technique in order to use color distribution in each region. Through the experiment, we confirmed that NPC has played a crucial role in the FPS game and as a result it draws more speed and strategic actions in the game.

The Obstacle Avoidance Algorithm of Mobile Robot using Line Histogram Intensity (Line Histogram Intensity를 이용한 이동로봇의 장애물 회피 알고리즘)

  • 류한성;최중경;구본민;박무열;윤경섭;윤석영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.331-334
    • /
    • 2002
  • In this paper, we present two types of vision algorithm that mobile robot has CCD camera. for obstacle avoidance. This is simple algorithm that compare with grey level from input images. Also, The mobile robot depend on image processing and move command from PC host. we has been studied self controlled mobile robot system with CCD camera. This system consists of digital signal processor, step motor, RF module and CCD camera. we used wireless RF module for movable command transmitting between robot and host PC. This robot go straight until recognize obstacle from input image that preprocessed by edge detection, converting, thresholding. And it could avoid the obstacle when recognize obstacle by line histogram intensity. Host PC measurement wave from various line histogram each 20 Pixel. This histogram Is ( x , y ) value of pixel. For example, first line histogram intensity wave from ( 0, 0 ) to ( 0, 197 ) and last wave from ( 280, 0 ) to ( 280, 197 ). So we find uniform wave region and nonuniform wave region. The period of uniform wave is obstacle region. we guess that algorithm is very useful about moving robot for obstacle avoidance.

  • PDF

Image segmentation using adaptive MIN-MAX genetic clustering and fuzzy worm searching (자율 적응 최소-최대 유전 군집호와 퍼지 벌레 검색을 이용한 영상 영역화)

  • 하성욱;서석배;강대성
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.781-784
    • /
    • 1998
  • An image segmentation approach based on the fuzzy worm searching and MIN-MAx clusterng algorithm is proposed in this paper. This algorithm deals with fuzzy worm value and min-max node at a gross scene level, which investigates the edge information including fuzzy worm action. But current segmentation methods based edge extraction methods generally need the mask information for the algebraic model, and take long run times at mask operation, wheras the proposed algorithm has single operation ccording to active searching of fuzzy worms. In addition, we also genetic min-max clustering using genetic algorithm to complete clustering and fuzyz searching on grey-histogram of image for the optimum solution, which can automatically determine the size of rnages and has both strong robust and speedy calculation. The simulation results showed that the proposed algorithm adaptively divided the quantized images in histogram region and performed single searching methods, significantly alleviating the increase of the computational load and the memory requirements.

  • PDF

Object Recognition Using the Edge Orientation Histogram and Improved Multi-Layer Neural Network

  • Kang, Myung-A
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.142-150
    • /
    • 2018
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the edge orientation histogram and principle component analysis. By using the detected object region as a recognition input image, in this paper the object recognition method combined with principle component analysis and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input object image, this method computes the eigenspace through principle component analysis and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the object recognition is performed by inputting the multi-layer neural network.

Stereoscopic Conversion of Monoscopic Video using Edge Direction Histogram

  • Kim, Jee-Hong;Kim, Dong-Wook;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.67-70
    • /
    • 2009
  • This paper proposes an algorithm for creating stereoscopic video from a monoscopic video. A viewer uses depth perception clues called a vanishing point which is the farthest from a viewer's viewpoint in order to perceive depth information from objects and surroundings thereof to the viewer. The viewer estimates the vanishing point with geometrical features in monoscopic images, and can perceive the depth information with the relationship between the position of the vanishing point and the viewer's viewpoint. In this paper, we propose a method to estimate a vanishing point with edge direction histogram in a general monoscopic image and to create a depth map depending on the position of the vanishing point. With the conversion method proposed through the experiment results, it is seen that stable stereoscopic conversion of a given monoscopic video is achieved.

  • PDF

Design of Video Segmentation System Using HMMD Color Model and Edge Histogram (HMMD 컬러 모델과 에지 히스토그램을 이용한 비디오분할 시스템 설계)

  • Jeong, Myoung-Kyoung;Kim, Jang-Hui;Kim, Young-Ho;Kang, Dae-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.277-278
    • /
    • 2006
  • Recently, as development of technique about super highway network and multimedia, the technique which effectively transfers, manages, stores and retrieves multimedia data is influenced. In this paper, by using HMMD color model and edge Histogram for segmentation of movie, efficient video segmentation is implemented than existing technologies.

  • PDF

A Mask-based Gaussian Noise Removal Algorithm in Spatial Space

  • Seo, Hyun-Soo;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.259-264
    • /
    • 2007
  • According to the development and wide use of broad band internet etc., diverse application technologies using large capacity data such as images have been progressed and in these systems, for accurate acquisition and precise applications of an original signal, the degradation phenomenon generated in the transmission process etc. should be removed. Noises have become known as the main cause of the degradation phenomenon and especially Gaussian noise represents characteristics occurring dependently in image signals and degrades detail information such as edge. In this paper, we removed Gaussian noise using a subdivided nonlinear function according to a threshold value and analyzed the histogram acquired from an edge image to establish a threshold value adaptively, and strengthened detail information of image by using the postprocessing. In simulation results, the proposed method represented excellent performance from comparison of MSE with existing methods.

Color Image Retrieval using Block-based Edge Histogram and DCT (Block-based Edge Histogram 과 DCT 를 이용한 칼라 영상 검색)

  • Lee, Dong-Ho;Ryoo, Kwang-Seok;Kim, Whoi-Yul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.04a
    • /
    • pp.1042-1046
    • /
    • 2000
  • 본 논문에서는 질감 정보를 나타낼 수 있는 Block-based 에지 히스토그램과 색상 정보를 표현할 수 있는 DCT 를 이용한 칼라 영상 검색 방법을 제안한다. 제안된 방법은 최소의 특징량으로 최대의 검색효율을 얻기 위해 YCbCr 칼라 모델상에서 Y 영상으로부터는 전체적인 영상에 대한 히스토그램과 에지 히스토그램을 특징량으로 추출하고 Cb, Cr 영상으로부터는 DCT 계수를 특징량으로 추출하여 칼라 영상을 검색한다. 이는 칼라와 질감을 동시에 고려하면서 특징량의 크기가 적어 웹, 대용량 검색 시스템 및 동영상 검색에 적합하다. 성능 평가는 MPEG-7 의 칼라 특징자들의 성능평가를 위해 사용된 S1 및 S3 그룹 영상을 대상으로 실험하였으며 제안한 복합 특징량은 칼라 영상 검색에서 우수한 성능을 나타냄을 실험으로 확인 하였다.

  • PDF

Adult Image Filtering using Support Vector Mchine (Support Vector Machine을 이용한 유해 이미지 분류)

  • Song, Chull-Hwan;Yoo, Seong-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.218-221
    • /
    • 2006
  • 본 논문은 인터넷의 대표적인 문제점중의 하나인 Adult Image 분류 연구에 대해 기술한다. 특히 우리는 이러한 Adult Image를 분류하기 위한 Data Set을 5가지 타입으로 구성한다. 이러한 각 Image에 대해 Color, Gradient, Edge Direction 특성의 Feature들을 추출하고 이를 Histogram으로 구성한다. 이렇게 구성된 Histogram을 Support Vector Machine에 적용하여 Adult Image를 분류한다. 그 결과, 우리는 8250개의 Test Set에 대하여 Recall(96.53%), Precision(97.33%), False Positive(2.96%), F-Measure(96.93%)의 성능 결과를 보여준다.

  • PDF