• Title/Summary/Keyword: edge failure

Search Result 287, Processing Time 0.036 seconds

Effect of loading rate on mechanical behavior of SRC shearwalls

  • Esaki, Fumiya;Ono, Masayuki
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.201-212
    • /
    • 2001
  • In order to investigate the effect of the loading rate on the mechanical behavior of SRC shearwalls, we conducted the lateral loading tests on the 1/3 scale model shearwalls whose edge columns were reinforced by H-shaped steel. The specimens were subjected to the reversed cyclic lateral load under a variable axial load. The two types of loading rate, 0.01 cm/sec for the static loading and 1 cm/sec for the dynamic loading were adopted. The failure mode in all specimens was the sliding shear of the in-filled wall panel. The edge columns did not fail in shear. The initial lateral stiffness and lateral load carrying capacity of the shearwalls subjected to the dynamic loading were about 10% larger than those subjected to the static loading. The effects of the arrangement of the H-shaped steel on the lateral load carrying capacity and the lateral load-displacement hysteresis response were not significant.

Static behaviour of bolted shear connectors with mechanical coupler embedded in concrete

  • Milosavljevic, Branko;Milicevic, Ivan;Pavlovic, Marko;Spremic, Milan
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.257-272
    • /
    • 2018
  • The research of shear connectors composed from mechanical couplers with rebar anchors, embedded in concrete, and steel bolts, as a mean of shear transfer in composite connections is presented in the paper. Specific issues related to this type of connections are local concrete pressure in the connector vicinity as well as the shear flow along the connector axis. The experimental research included 18 specimens, arranged in 5 series. Nonlinear numerical analyses using Abaqus software was conducted on corresponding FE models. Different failure modes were analysed, with emphasis on concrete edge failure and bolt shear failure. The influence of key parameters on the behaviour of shear connector was examined: (1) concrete compression strength, (2) bolt tensile strength and diameter and (3) concrete edge distance. It is concluded that bolted shear connectors with mechanical couplers have sufficient capacity to be used as shear connectors in composite structures and that their behaviour is similar to the behaviour of post installed anchors as well as other types of connectors anchored without the head.

Literature review on the experimental method and interpretation of the edge chipping test (ECT) (Edge chipping test (ECT)의 실험방법과 해석에 관한 문헌고찰)

  • Song, Min-Gyu;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.1
    • /
    • pp.9-18
    • /
    • 2022
  • In vitro studies are essential to predict the clinical performance of ceramic widely used as restorative materials. Traditional experiments such as fracture toughness and flexural strength have been used to evaluate the properties of brittle ceramics. However, these experiments have a limitation that the load conditions, failure patterns, and load values at which failure occurs are not similar to human occlusal force ranges or clinical failures. On the other hand, the edge chipping test (ECT), which was recently introduced to study chipping fracture of ceramics, has similar failure patterns to clinical trials. In addition, the failure loads from ECT were similar to human occlusal force. ECT can be usefully used in the study of ceramic properties. In this literature review, a more clinically meaningful experimental study of ceramics by examining the meaning and limitations of traditional ceramic failure tests and comparing them with ECT.

PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.497-505
    • /
    • 2018
  • Three points bending flexural test was modeled numerically to study the crack propagation in the pre-cracked beams. The pre-existing edge cracks in the beam models were considered to investigate the crack propagation and coalescence paths within the modeled samples. The effects of particle size on the single edge-notched round bar in bending test were considered too. The results show that Failure pattern is constant by increasing the ball diameter. Tensile cracks are dominant mode of failure. These crack initiates from notch tip, propagate parallel to loading axis and coalescence with upper model boundary. Number of cracks increase by decreasing the ball diameter. Also, tensile fracture toughness was decreased with increasing the particle size. In the present study, the influences of particles sizes on the cracks propagations and coalescences in the brittle materials such as rocks and concretes are numerically analyzed by using a three dimensional particle flow code (PFC3D). These analyses improve the understanding of the stability of rocks and concretes structures such as rock slopes, tunnel constructions and underground openings.

Strengthening of bolted shear joints in industrialized ferrocement construction

  • Ismail, M.;Shariati, M.;Abdul Awal, A.S.M.;Chiong, C.E.;Chahnasir, E. Sadeghipour;Porbar, A.;Heydari, A.;Khorami, M.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.681-690
    • /
    • 2018
  • This paper highlights results of some experimental work that deals with strengthening of bolted shear joints in thin-walled ferrocement structure where steel wires, bent into U-shape are considered as simple inserts around the bolt hole. The parameters investigated include the number of layers of wire mesh, edge distance of bolt hole, size and location of the inserts. Test results have shown that for small edge distance, failure occurred either in cleavage or shearing mode, and the strength of the joint increased with an increase in the edge distance. This continued up to an upper limit set by either tension or bearing failure. The experimental study further revealed that for a given edge distance the strength of a joint can significantly be enhanced by using U-inserts. The equations developed for predicting joint strength in ferrocement composites can also be modified to include the effects of the inserts with a good level of accuracy.

Comparison and prediction of seismic performance for shear walls composed with fiber reinforced concrete

  • Zhang, Hongmei;Chen, Zhiyuan
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.111-126
    • /
    • 2021
  • Concrete cracking due to brittle tension strength significantly prevents fully utilization of the materials for "flexural-shear failure" type shear walls. Theoretical and experimental studies applying fiber reinforced concrete (FRC) have achieved fruitful results in improving the seismic performance of "flexural-shear failure" reinforced concrete shear walls. To come to an understanding of an optimal design strategy and find common performance prediction method for design methodology in terms to FRC shear walls, seismic performance on shear walls with PVA and steel FRC at edge columns and plastic region are compared in this study. The seismic behavior including damage mode, lateral bearing capacity, deformation capacity, and energy dissipation capacity are analyzed on different fiber reinforcing strategies. The experimental comparison realized that the lateral strength and deformation capacity are significantly improved for the shear walls with PVA and steel FRC in the plastic region and PVA FRC in the edge columns; PVA FRC improves both in tensile crack prevention and shear tolerance while steel FRC shows enhancement mainly in shear resistance. Moreover, the tensile strength of the FRC are suggested to be considered, and the steel bars in the tension edge reaches the ultimate strength for the confinement of the FRC in the yield and maximum lateral bearing capacity prediction comparing with the model specified in provisions.

Edge Flame : Why Is It So Hot in Combustion?

  • Kim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.19-27
    • /
    • 2000
  • A turbulent combustion model, based on edge flame dynamics, is discussed in order to predict global extinction of turbulent flames. The model is applicable to the broken flamelet regime of turbulent combustion, in which global extinction of turbulent flame is achieved by gradual expansion of flame holes. The edge flame dynamics is the key mechanism to describe the flame hole expansion or contraction. For flames with Lewis numbers near unity, there is a $Damk{\ddot{o}}hler$ number, namely the crossover $Damk{\ddot{o}}hler$ number, at which edge flame changes its direction of propagation. The parametric region between the quasi-steady extinction condition and the edge-flame crossover condition is a metastable region, in that flames without edge can stay in their burning states while flames with edge have to retract to expand quenching holes. Using the above properties of edge flame, Hartley and Dold proposed a Lagrangian hole dynamics, which allows us to simulate transient variation of quenching holes. In their model, each stoichiometric surface is subjected to a random sequence of scalar dissipation rate compatible to the equilibrium turbulence. Then, each stoichiometric surface will evolve, according to the combustion map, dependent on the scalar dissipation rate and existence of flame edge, If all the burning surfaces are annihilated, the event can be declared as a global extinction. The consequence obtained from the above model also can be used as a subgrid model to determine local extinction occurring in a calculation grid.

  • PDF

New Edge Dependent Deinterlacing Algorithm Based on Horizontal Edge Pattern (수평 방향 에지의 패턴을 고려한 순차주사화 알고리즘)

  • 박민규;이태윤;강문기;오상근
    • Journal of Broadcast Engineering
    • /
    • v.8 no.4
    • /
    • pp.492-500
    • /
    • 2003
  • In this paper, we propose a new deinterlacing algorithm which is an edge dependent Interpolation (EDI) algorithm based on a horizontal edge pattern. Generally, a conventional EDI algorithm has a visually better performance than any other deinterlacing algorithm using one field. However, it produces unpleasant results due to the failure of estimating edge direction. In order to exactly detect edge direction, we use not only simple difference but also edge patterns. Experimental results indicate that the proposed algorithm outperforms conventional approaches with respect to both objective and subjective criteria. Index Terms I-to-P conversion, deinterlacing, edge dependent interpolation, edge pattern.

Investigation on the failure mechanism of steel-concrete steel composite beam

  • Zou, Guang P.;Xia, Pei X.;Shen, Xin H.;Wang, Peng
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1183-1191
    • /
    • 2016
  • The internal crack propagation, the failure mode and ultimate load bearing capacity of the steel-concrete-steel composite beam under the four-point-bend loading is investigated by the numerical simulation. The results of load - displacement curve and failure mode are in good agreement with experiment. In order to study the failure mechanism, the composite beam has been modeled, which part interface interaction between steel and concrete is considered. The results indicate that there are two failure modes: (a) When the strength of the interface is lower than that of the concrete, failure happens at the interface of steel and concrete; (b) When the strength of the interface is higher than that of the concrete, the failure modes is cohesion failure, i.e., and concrete are stripped because of the shear cracks at concrete edge.

Deinterlacing Method Based on Edge Direction Refinement Using Weighted Median Filter (가중중앙값 필터를 이용한 에지 방향성 보정 기반 디인터레이싱 기법)

  • Jang, Seung-Min;Kim, Young-Chul;Hong, Sung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.89-96
    • /
    • 2009
  • In this paper, we propose an efficient deinterlacing algorithm which is an edge dependent interpolation based on edge direction refinement. The conventional edge dependent interpolation algorithms have a visually better performance than any other Intra-field deinterlacing algorithms. However they are very sensitive to noise due to the failure of estimating edge direction. In order to exactly detect edge direction, our method detects edge direction of around interpolated pixel and refines the edge direction using weighted median filter. Simulation results have shown the efficacy of the proposed method with significant improvement over the previous methods in terms of the objective PSNR quality as well as the subjective image quality.