• Title/Summary/Keyword: edge distribution function(EDF)

Search Result 5, Processing Time 0.021 seconds

A Lane Departure Warning Algorithm Based on an Edge Distribution Function (에지분포함수 기반의 차선이탈경보 알고리즘)

  • 이준웅;이성웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.143-154
    • /
    • 2001
  • An algorithm for estimating the lane departure of a vehicle is derived and implemented based on an EDF(edge distribution function) obtained from gray-level images taken by a CCD camera mounted on a vehicle. As the function of edge direction, the EDF is aimed to show the distribution of edge direction and to estimate the possibility of lane departure with respect to its symmetric axis and local mamma. The EDF plays important roles: 1) It reduces noisy effects caused by dynamic road scene. 2) It makes possible lane identification without camera modeling. 3) It also leads LDW(lane departure warning) problem to a mathematical approach. When the situations of lane departure such that the vehicle approaches to lane marks or runs in the vicinity of the lane marks are occurred, the orientation of lane marks in images is changed, and then the situations are immediately reflected to the EDF. Accordingly, the lane departure is estimated by studying the shape of the EDF. The proposed EDF-based algorithm enhanced the adaptability to cope with the random and dynamic road environments, and eventually led to the reliable LDW system.

  • PDF

The Edge Distribution Function Based Method of Trajectory Tracking for AGV

  • Yi, Un-Kun;Ha, Sung-Kil;Jung, Sung-Yun;Hwang, Hee-Jung;Baek, Kwang-Ryul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1701-1704
    • /
    • 2005
  • We developed an machine vision method for navigation control of a traveling automatic guided vehicle(AGV) on desired trajectory with guided marks. The formulated EDF accumulates the edge magnitude for edge directions. The EDF has distinctive peak points at the vicinity of trajectory directions due to the directional and the positional continuities of desired trajectory. Examining the EDF by its shape parameters of the local maxima and symmetry axis results in identifying whether or not change in traveling direction of an AGV has occurred. Simulation results show that the presented method is useful for navigation control of AGV.

  • PDF

Extraction of Lane-Reined Information Based on an EDF and Hough Transform (EDF와 하프변환 기반의 차선관련 정보 검출)

  • Lee Joonwoong;Lee Kiyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.48-57
    • /
    • 2005
  • This paper presents a novel algorithm in order to extract lane-related information based on machine vision techniques. The algorithm makes up for the weak points of the former method, the Edge Distribution Function(EDF)-based approach, by introducing a Lane Boundary Pixel Extractor (LBPE) and the well-known Hough Transform(HT). The LBPE that serves as a filter to extract pixels expected to be on lane boundaries enhances the robustness of machine vision, and provides its results to the HT implementation and EDF construction. The HT forms the accumulator arrays and extracts the lane-related parameters composed of orientation and distance. Furthermore, as the histogram of edge magnitude with respect to edge orientation angle, the EDF has peaks at the orientations corresponding to lane slopes on the perspective image domain. Therefore, by fusing the results from the EDF and the HT the proposed algorithm improves the confidence of the extracted lane-related information. The system shows successful results under various degrees of illumination.

A Fuzzy Neural-Network Algorithm for Noisiness Recognition of Road Images (도로영상의 잡음도 식별을 위한 퍼지신경망 알고리즘)

  • 이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.147-159
    • /
    • 2002
  • This paper proposes a method to recognize the noisiness of road images connected with the extraction of lane-related information in order to prevent the usage of erroneous information. The proposed method uses a fuzzy neural network(FNN) with the back-Propagation loaming algorithm. The U decides road images good or bad with respect to visibility of lane marks on road images. Most input parameters to the FNN are extracted from an edge distribution function(EDF), a function of edge histogram constructed by edge phase and norm. The shape of the EDF is deeply correlated to the visibility of lane marks of road image. Experimental results obtained by simulations with real images taken by various lighting and weather conditions show that the proposed method was quite successful, providing decision-making of noisiness with about 99%.

EXTRACTION OF LANE-RELATED INFORMATION AND A REAL-TIME IMAGE PROCESSING ONBOARD SYSTEM

  • YI U. K.;LEE W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.171-181
    • /
    • 2005
  • The purpose of this paper is two-fold: 1) A novel algorithm in order to extract lane-related information from road images is presented; 2) Design specifications of an image processing onboard unit capable of extracting lane­related information in real-time is also presented. Obtaining precise information from road images requires many features due to the effects of noise that eventually leads to long processing time. By exploiting a FPGA and DSP, we solve the problem of real-time processing. Due to the fact that image processing of road images relies largely on edge features, the FPGA is adopted in the hardware design. The schematic configuration of the FPGA is optimized in order to perform 3 $\times$ 3 Sobel edge extraction. The DSP carries out high-level image processing of recognition, decision, estimation, etc. The proposed algorithm uses edge features to define an Edge Distribution Function (EDF), which is a histogram of edge magnitude with respect to the edge orientation angle. The EDF enables the edge-related information and lane-related to be connected. The performance of the proposed system is verified through the extraction of lane-related information. The experimental results show the robustness of the proposed algorithm and a processing speed of more than 25 frames per second, which is considered quite successful.