• Title/Summary/Keyword: edge defects

Search Result 180, Processing Time 0.024 seconds

Effect of Veneer Thickness on a Far-infrared Radiation Drying Characteristics of Edge-and Flat-Sliced Veneers for Decoration (단판의 두께가 곧은결 및 무늬결 무늬목단판의 원적외선건조 특성에 미치는 영향)

  • 이남호;최준호;황의도
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2000
  • This study was carried out to investigate the effect of grain and veneer thickness on drying rate, required energy consumption, and drying defects such as checking, end waving, and burning during a far-infrared radiation drying process of decorative veneers of hard maple and beech. Most of the veneer could be dried from green to in-use moisture content within 30 to 360 seconds. The drying rates were significantly affected by veneer thickness, but there was little difference between edge-and flat-sliced veneers. The formation of checking during drying test was none or very slight. The percentages of the veneers defected by checks were higher in the flat-sliced veneers than in the edge-sliced veneers. The maximum end wavinesses in the flat-sliced veneers were almost 1.6 to 3 times larger than that in the edge-sliced veneers. All veneers were fee from burned marks during drying test.

  • PDF

Fiber Drawing Induced Defects in Silica Optical Fiber (광섬유 인선 공정에 의해 생성된 실리카 광섬유내 점결함)

  • 안병길;이종원;김효태
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1102-1105
    • /
    • 2003
  • The fiber drawing process induced defects in silica fiber have been investigated. This study has focused on the Oxygen Deficient Centers (ODCs) and E' centers induced by the fiberization process in low-OH silica fibers. To investigate those defects induced by the fiberization process, the optical absorption spectrum and Electron Spin Resonance (ESR) have both been employed. The concentration of Oxygen Deficient Centers (ODCs) and E' centers are increased by the fiber drawing process. The population of defects in the neck-down region has also been investigated. The most significant generation of defects during fiber drawing process has been shown to occur in this region of silica preform. The population of defects is higher on the edge region than in the center of neck-down region.

Factors Influencing Edge Dendritic Plating of Steel Sheet in the Electro-Galvanizing Line

  • Du-Hwan Jo;Moonjae Kwon;Doojin Paik;Myungsoo Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.215-220
    • /
    • 2024
  • Recently, the demand for Zn-Ni electrogalvanized steel sheets for home appliances and automobiles is increasing. Products should have a thick plating (30 to 40 g/m2) on both side with a thin thickness (≤ 0.8 mm) and the highest surface quality. By a high current density operation, current is concentrated in the edge part of the steel sheet, resulting in large surface dent defects due to dendritic plating. This can lead to a low productivity due to low line speed operation. To solve this problem, this study aimed to identify factors influencing dendritic plating. A cylindrical electroplating device was manufactured. Effects of cut edge shape and thickness of steel plate, current density, temperature, flow rate, electrolyte concentration, and pH on dendrite generation of Zn-Ni electroplating were examined. To investigate effect of edge shape of the steel sheet, the steel sheet was manufactured using three processing methods: shearing, polishing after shearing, and laser. Relative effects thickness and cut edge processing methods of the steel plate, current density, temperature, flow rate, electrolyte concentration, and pH of plating solution on dendrite plating were investigated. To prevent dendrite plating, an edge mask was manufactured and its application effect was investigated.

Transmission Electron Microscopy Study of Stacking Fault Pyramids Formed in Multiple Oxygen Implanted Silicon-on-Insulator Material

  • Park, Ju-Cheol;Lee, June-Dong;Krause, Steve J.
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.151-157
    • /
    • 2012
  • The microstructure of various shapes of stacking fault pyramids (SFPs) formed in multiple implant/anneal Separation by Implanted Oxygen (SIMOX) material were investigated by plan-view and cross-sectional transmission electron microscopy. In the multiple implant/anneal SIMOX, the defects in the top silicon layer are confined at the interface of the buried oxide layer at a density of ${\sim}10^6\;cm^{-2}$. The dominant defects are perfect and imperfect SFPs. The perfect SFPs were formed by the expansion and interaction of four dissociated dislocations on the {111} pyramidal planes. The imperfect SFPs show various shapes of SFPs, including I-, L-, and Y-shapes. The shape of imperfect SFPs may depend on the number of dissociated dislocations bounded to the top of the pyramid and the interaction of Shockley partial dislocations at each edge of {111} pyramidal planes.

Finite Element Modeling of Wall Thinning Defects: Applications to Lamb Wave Generation and Interaction

  • Jeong, Hyun-Jo;Kim, Tae-Ho;Lee, Seung-Seok;Kim, Young-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.199-204
    • /
    • 2008
  • The generation of axisymmetric Lamb waves and interaction with wall thinning (corrosion) defects in hollow cylinders are simulated using the finite element method. Guided wave interaction with defects in cylinders is challenged by the multi-mode dispersion and the mode conversion. In this paper, two longitudinal, axisymmetric modes are generated using the concept of a time-delay periodic ring arrays (TDPRA), which makes use of the constructive/destructive interference concept to achieve the unidirectional emission and reception of guided waves. The axisymmetric scattering by the wall thinning extending in full circumference of a cylinder is studied with a two-dimensional FE simulation. The effect of wall thinning depth, axial extension, and the edge shape on the reflections of guided waves is discussed.

Development of Hard Mask Strip Inspection System for Semiconductor Wafer Manufacturing Process (반도체 전공정의 하드마스크 스트립 검사시스템 개발)

  • Lee, Jonghwan;Jung, Seong Wook;Kim, Min Je
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.55-60
    • /
    • 2020
  • The hard mask photo-resist strip inspection system for the semiconductor wafer manufacturing process inspects the position of the circuit pattern formed on the wafer by measuring the distance from the edge of the wafer to the strip processing area. After that, it is an inspection system that enables you to check the process status in real time. Process defects can be significantly reduced by applying a tester that has not been applied to the existing wafer strip process, edge etching process, and wafer ashing process. In addition, it is a technology for localizing semiconductor process inspection equipment that can analyze the outer diameter of the wafer and the state of pattern formation, which can secure process stability and improve wafer edge yield.

Development of Defects Detecting System for Corrugated Board, Mill Application, and Changes of Production Defects Ratio (골판지 불량 검색 시스템 개발, 현장적용과 생산 불량률 변화)

  • Jeong, Jin-Mo;Min, Kyung-Eun;Kim, Mun-Sung;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.2
    • /
    • pp.37-42
    • /
    • 2008
  • Defects of corrugated board were limiting factors to the corrugated industry's growth. On-line detecting systems of defects are beneficial to increase profits of the corrugated board companies by reducing base paper consumption, increasing process reliability, and increasing productivity. By replacing naked eye inspection of defects to a defects detecting system, continuous inspection without fatigue may guarantee final products quality. The system was developed, which was consisted of line scan CCD camera, lens, illuminating parts, high speed image processor, software, various input parts, and output parts. First installation location of the system was at before fluting process after base paper unwinding, and surface of liner board was inspected by the system. Second installation location was after fluting process and combining process for liner board. Production loss includes ragged appearance of edge, irregular flute shape, wrong combination of flute, score cracking, defects in base paper, and flute cracking. The production loss was analyzed before and after the system installation at a commercial domestic mill. The production loss ratio was defined as a production loss weight per total production weight. The production loss ratio before the installation was decreased a lot from 1.28%(during 3 months before installation) to 0.76%(during 12 months after the first installation) and to 0.25%(during 6 months after the second installation).

Numerical Evaluation of Hemming Defects Found on Automotive Door Panels (유한요소해석에 의한 자동차 도어패널의 헤밍 결함 평가)

  • Seo, O.S;Jeon, K.Y;Rhie, C.H;Kim, H.Y
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.280-286
    • /
    • 2015
  • Hemming is used to connect two sheet metal components by folding the edge of an outer panel around an inner panel to create a smooth edge. The minimization of hemming defects is critical to the final quality of automobile products because hemming is one of the last operations during fabrication. Designing the hemmed part is not easy and is influenced by the geometry of the bent part. Therefore, the main problem for automotive parts is dimensional accuracy since formed products often deviate geometrically due to large springback. Few numerical approaches using 3-dimensional finite element model have been applied to hemming due to the small element size which is needed to properly capture the bending behavior of the sheet around small die corner and the comparatively big size of automotive opening parts, such as doors, hoods and deck lids. The current study concentrates on the 3-dimensional numerical simulation of hemming for an automotive door. The relationship between the design parameters of the hemming operation and the height difference defect is shown. Quality improvement of the automotive door can be increased through the study of model parameters.

Ultrasonic Characteristics of Internal Planar Defects of a Hot Forged Al-Si Alloy Part (Al-Si 합금 열간단조품 내부의 판상 결함의 초음파 특성)

  • Lee, Seok-Won;Joun, Man-Soo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.612-617
    • /
    • 2001
  • A nondestructive evaluation technique for detecting internal defects of an hot forged Al-Si alloy part is established in this study. Ultrasonic characteristics of various internal planar defects are investigated by experiments for establishing a reliable test procedure. The effect of the angle between ultrasonic energy propagation directions and planar defects on the ultrasonic signal configuration is evaluated in the pulse-echo technique. A characteristic of ultrasonic signal for the internal planar defect located near the edge is also evaluated. The applicability of the through-transmission technique is also discussed. Reliability of the presented approach is validated by the destructive testing for more than 500 specimens.

  • PDF

A Study on Cause of Defects in NIL Molding Process using FEM (유한요소 해석을 이용한 나노임프린트 가압 공정에서 발생하는 결함 원인에 대한 연구)

  • Song, N.H.;Son, J.W.;Kim, D.E.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.364-367
    • /
    • 2007
  • In nano-imprint lithography (NIL) process, which has shown to be a good method to fabricate polymeric patterns, several kinds of pattern defects due to thermal effects during polymer flow and mold release operation have been reported. A typical defect in NIL process with high aspect ratio and low resist thickness pattern is a resist fracture during the mold release operation. It seems due to interfacial adhesion between polymer and mold. However, in the present investigation, FEM simulation of NIL molding process was carried out to predict the defects of the polymer pattern and to optimize the process by FEA. The embossing operation in NIL process was investigated in detail by FEM. From the analytical results, it was found that the lateral flow of polymer resin and the applied pressure in the embossing operation induce the weld line and the drastic lateral strain at the edge of pattern. It was also shown that the low polymer-thickness result in the delamination of polymer from the substrate. It seems that the above phenomena cause the defects of the final polymer pattern. To reduce the defect, it is important to check the initial resin thickness.

  • PDF