• Title/Summary/Keyword: edge covering coloring

Search Result 2, Processing Time 0.02 seconds

EDGE COVERING COLORING OF NEARLY BIPARTITE GRAPHS

  • Wang Ji-Hui;Zhang Xia;Liu Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.435-440
    • /
    • 2006
  • Let G be a simple graph with vertex set V(G) and edge set E(G). A subset S of E(G) is called an edge cover of G if the subgraph induced by S is a spanning subgraph of G. The maximum number of edge covers which form a partition of E(G) is called edge covering chromatic number of G, denoted by X'c(G). It is known that for any graph G with minimum degree ${\delta},\;{\delta}-1{\le}X'c(G){\le}{\delta}$. If $X'c(G) ={\delta}$, then G is called a graph of CI class, otherwise G is called a graph of CII class. It is easy to prove that the problem of deciding whether a given graph is of CI class or CII class is NP-complete. In this paper, we consider the classification of nearly bipartite graph and give some sufficient conditions for a nearly bipartite graph to be of CI class.

An Algorithm for the Edge Coloring Problem (호의 색칠문제의 해법)

  • Park, Sung-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.2
    • /
    • pp.43-49
    • /
    • 1992
  • Edge coloring problem is to find a minimum cardinality coloring of the edges of a graph so that any pair of edges incident to a common node do not have the same colors. Edge coloring problem is NP-hard, hence it is unlikely that there exists a polynomial time algorithm. We formulate the problem as a covering of the edges by matchings and find valid inequalities for the convex hull of feasible solutions. We show that adding the valid inequalities to the linear programming relaxation is enough to determine the minimum coloring number(chromatic index). We also propose a method to use the valid inequalities as cutting planes and do the branch and bound search implicitly. An example is given to show how the method works.

  • PDF