• Title/Summary/Keyword: edge combiner

Search Result 3, Processing Time 0.015 seconds

A 166MHz Phase-locked Loop-based Frequency Synthesizer (166MHz 위상 고정 루프 기반 주파수 합성기)

  • Minjun, Cho;Changmin, Song;Young-Chan, Jang
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.714-721
    • /
    • 2022
  • A phase-locked loop (PLL)-based frequency synthesizer is proposed for a system on a chip (SoC) using multi-frequency clock signals. The proposed PLL-based frequency synthesizer consists of a charge pump PLL which is implemented by a phase frequency detector (PFD), a charge pump (CP), a loop filter, a voltage controlled oscillator (VCO), and a frequency divider, and an edge combiner. The PLL outputs a 12-phase clock by a VCO using six differential delay cells. The edge combiner synthesizes the frequency of the output clock through edge combining and frequency division of the 12-phase output clock of the PLL. The proposed PLL-based frequency synthesizer is designed using a 55-nm CMOS process with a 1.2-V supply voltage. It outputs three clocks with frequencies of 166 MHz, 83 MHz and 124.5MHz for a reference clock with a frequency of 20.75 MHz.

Implementation and Evaluation of the 100 Watt High Power Amplifier for Broadband Digital TV Repeater (광대역 디지털TV 중계기용 100 Watt 고출력증폭기의 구현 및 특성 측정에 관한 연구)

  • Sung, Jeon-Joong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.575-582
    • /
    • 2007
  • In this paper, a 100 Watt high power amplifier has been implemented and performed evaluation, which is operating at UHF band ($470\;{\sim}\;806\;MHz$) for Digital TV repeater. To achieve increase of bandwidth and high power capability, 3-way power combiner and divider of Wilkinson type was adopted. In order to measure the fabricated 100 Watt power amplifier, the estimation technique function which makes equivalent mask was used. As a result of the measurement, the existence of pilot signal is confirmed and the signal transmitted at the rated output power 100 Watt is brought out the flat feature through 6 MHz bandwidth. and it resulted that its value was less than -47 dB at the edge of radiation channel and less than -110 dB at more than 6 MHz position from channel edge.

A 0.12GHz-1.4GHz DLL-based Clock Generator with a Multiplied 4-phase Clock Using a 0.18um CMOS Process

  • Chi, Hyung-Joon;Lee, Jae-Seung;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.264-269
    • /
    • 2006
  • A $0.12GHz{\sim}1.4GHz$ DLL-based clock generator with the capability of multiplied four phase clock generation was designed using a 0.18um CMOS process. An adaptive bandwidth DLL with a regulated supply delay line was used for a multiphase clock generation and a low jitter. An extra phase detector (PD) in a reference DLL solves the problem of the initial VCDL delay and achieves a fast lock time. Twice multiplied four phase clocks were generated at the outputs of four edge combiners, where the timing alignment was achieved using a coarse lock signal and the 10 multiphase clocks with T/8 time difference. Those four clocks were combined one more time using a static XOR circuit. Therefore the four times multiplication was achieved. With a 1.8V supply, the rms jitter of 2.1ps and the peak-to-peak jitter of 14.4ps were measured at 1.25GHz output. The operating range is $0.12GHz{\sim}1.4GHz$. It consumes 57mW and occupies 450*325um2 of die area.