• 제목/요약/키워드: eddy viscosity model

검색결과 155건 처리시간 0.174초

수심평균 혼합거리 난류 모형의 개발 및 와점성계수의 평가 (Development of Depth-averaged Mixing Length Turbulence Model and Assessment of Eddy Viscosity)

  • 최승용;한건연;황재홍
    • 한국습지학회지
    • /
    • 제13권3호
    • /
    • pp.395-409
    • /
    • 2011
  • 본 연구의 목적은 개수로에서 난류모의를 위한 2차원 모형을 개발하는데 있다. 연구모델은 Streamline Upwind / Petrov-Galerkin 유한요소법과 Boussinesq의 와점성이론을 기초로 하였는데, 수심적분을 취한 혼합거리 모형과 난류의 이방성과 국부평형의 조건을 적용하였다. 모형의 보정과 검증을 위해서 해석해와 관측자료를 활용하였다. 몇 가지 수치모의를 수행함으로써 난류모형의 민감도와 계산수행 능력을 확인할 수 있었다. 본 연구모형은 자연하천에서의 모형 적용성 확인을 위해서 한강유역에 적용하였고 모의치는 실측자료와 비교하였다. 개발된 모형은 자연하천에서의 관측자료와 비교적 잘 일치하는 것으로 나타났다. 결론적으로 본 연구의 2차원 유한요소모형은 개수로에서의 난류모의에 기초한 흐름분포에 있어 신뢰할만한 결과를 제공하는 것으로 나타났다.

배사구 유입부 흐름 및 하상변동 수치모의를 위한 매개변수 검정 및 민감도 분석에 관한 연구 (Parameter Calibration and Sensitivity Analysis for Numerical Modeling of Flow and Bed Changes near the Opening Gate for Sediment Release)

  • 장은경;임종철;지운;여운광
    • 한국환경과학회지
    • /
    • 제20권9호
    • /
    • pp.1151-1163
    • /
    • 2011
  • The bed change analysis near the opening gate of a dam or weir to release deposited sediments have been conducted mostly using the numerical models. However, the use of unverified input parameters in the numerical model is able to produce the different results with natural and real conditions. Also, the bed changes near the opening gate of a dam or weir calculated with a numerical model could be varied depending on the geometry extent included the downstream area with supercritical flow in the model. In addition, the different time steps could provide different results in the bed change calculation, even though other conditions such as input parameters, geometries, and total simulation time were same. Therefore, in this study, hydraulic experiments were performed to validate the eddy viscosity coefficient which is the one of important input parameters in the RMA2 model and relevant to variation of simulation results. The bed changes were calculated using the SED2D model based on flow results calculated in the RMA2 model with the verified and selected eddy viscosity coefficient and also compared with experimental results. The bed changes near the opening gate were underestimated in the numerical model comparing with experimental results except only the numerical case without the modeling section of sediment release pipe and downstream area where the supercritical flow was produced. For the simulation of minimum time steps, different shapes of scour hole were produced in numerical and physical modeling.

압력 구배가 없는 평판 천이 경계층 유동을 예측하기 위한 k-$\varepsilon$모형의 개발 (A New k-$\varepsilon$ Model for Prediction of Transitional Boundary-Layer Under Zero-Pressure Gradient)

  • 백성구;임효재;정명균
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.305-314
    • /
    • 2001
  • A modified model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a universal model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity (1%∼6%) under zero-pressure gradient. It was found that the profiles of mean velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily predicted throughout the flow regions.

대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크내의 유동 구조의 연구 (The study of flow structure in a mixing tank for different Reynolds numbers using LES)

  • 윤현식;하만영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1806-1813
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PIV measurements (Hill et $al.^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et $al.^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the nondimeansional eddy viscosity, resolve scale and subgrid scale dissipations is clearly shown in this study.

  • PDF

유동장 및 분무특성에 미치는 난류모델의 영향 (The Effect of Turbulence Model on the Flow Field and the Spray Characteristics)

  • 양희천;유홍선
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.87-100
    • /
    • 1997
  • The ability of turbulence model to accurately describe the complex characteristics of the flow field and the fuel spray is of great importance in the optimum design of diesel engine. The numerical simulations of the flow field and the spray characteristics within the combustion chamber of direct injection model entgine are performed to examine the applicability of turbulence model. The turbulence models used are the RNG $\varepsilon$ model and the modified $\varepsilon$ model which included the compressibility effect due to the compression/expansion of the charges. In this study, the predicted results in the quiescent condition of direct injection model engine show reasonable trends comparing with the experimental data of spray characteristics, i. e., spray tip penetration, spray tip velocity. The results of eddy viscosity obtained using the $\varepsilon$ model in the spray region is significantly larger than that obtained using the RNG $\varepsilon$ model. The application of the RNG model seems to have some potential for the simulations of the spray characteristics, e. g., spray tip penetration, spray tip velocity, droplets distribution over the $\varepsilon$ model.

  • PDF

쇄파대(碎波帶)에서 undertow에 관한 수학적(數學的) 모형(模型) (A Mathematical Model of Undertow in the Surf Zone)

  • 이종섭;박일흠
    • 대한토목학회논문집
    • /
    • 제13권3호
    • /
    • pp.193-206
    • /
    • 1993
  • 쇄파대(碎波帶)에서 undertow에 관한 해석적(解釋的) 모형(模型)을 제시(提示)하였다. 유도(誘導)된 기초방정식(基礎方程式)의 각 항(項)은 크기 비교(比較)로 평가(評價)되었으며, 이에 따라 난류법선응력(亂流法線應力)와 streaming velocity 항(項)이 무시(無視)될 수 있었다. undertow의 기동력(起動力)이 되는 파종성분(波動成分)의 각 항(項)은 Chebyshev 4차(次) 다항식(多項式)으로 근사(近似)한 파형(波形)으로 산정(算定)하였다. 그리고 과동점성계수(過動點性係數)의 연직분포(鉛直分布)를 3가지 형태(形熊)의 함수(凾數)로 가정(假定)하였으며, 과동점성계수(過動點性係數)의 상수(常數)는 새로운 경계조건(境界條件)을 도입(導入)하여 결정(決定)하였다. 그 결과(結果), undertow의 해(解)를 구하는데 필요한 인력(入力) 매개변수(媒介變數)가 간단화(簡單化) 되었다. 여러가지 수리실험자료(水理實驗資料)와 본(本) 모형(模型)의 해(解)를 비교(比較)한 결과(結果), 저면경사(底面傾斜)가 완만(緩慢)할수록 그리고 과동점성계수(過動點性係數)의 연직분포(鉛直分布)를 선형함수(線形凾數)로 가정(假定)하였을 때 좋은 결과(結果)를 나타내었다.

  • PDF

EFDC 모형을 이용한 댐 붕괴류 수치모의 및 매개변수 민감도 분석 (Numerical Simulation of Dam Break Flow using EFDC Model and Parameter Sensitivity Analysis)

  • 장철;송창근
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a series of numerical simulation of dam break flow was conducted using EFDC model, and input conditions including cell size, time step, and turbulent eddy viscosity were considered to analyze parameter sensitivity. In case of coarse mesh layout, the propagated length of the shock wave front was ${\Delta}_x$ longer than that of other mesh layouts, and the velocity results showed jagged edge, which can be cured by applying fine grid mesh. Turbulent eddy viscosity influenced magnitude of the maximum velocity passing through gate up to 20% and the cell Peclet number less than 2.0 ensured no numerical oscillations.

큰 에디 모사 기법을 이용한 초기 천이 경계층 유동 및 방사 소음 해석 (A study on the early stage of a transitional boundary layer and far field noise using a large eddy simulation technique)

  • 최명렬;최해천;강신형
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.779-792
    • /
    • 1997
  • Flow characteristics are numerically investigated when a packet of waves consisting of a Tollmien-Schlichting wave and a pair of Squire waves evolves in a flat-plate laminar boundary layer using a large eddy simulation with a dynamic subgrid-scale model. Characteristics of early stage transitional boundary layer flow such as the .LAMBDA. vortex, variation of the skin friction and backscatter are predicted. Smagorinsky constants and the eddy viscosity obtained from the dynamic subgrid-scale model significantly change as the flow evolves. Far Field noise radiated from the transitional boundary layer shows the dipole and quadrupole characteristics owing to the wall shear stress and the Reynolds stresses, respectively.

비정렬 격자를 이용한 LES 기법 개발 (DEVELOPMENT OF A LARGE EDDY SIMULATION METHOD ON UNSTRUCTURED MESHES)

  • 이경세;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.106-109
    • /
    • 2006
  • A large eddy simulation with explicit filters on unstructured mesh is presented. Two explicit filters are adopted for reducing the aliasing error of the nonlinear convective term and measuring the level of subgrid scale velocity fluctuation, respectively. The developed subgrid scale model is basically eddy viscosity model which depends on the explicitly filtered fields and needs no additional ad hoc wall treatment such as van Driest damping function. As a validation problem, the flows around a sphere at several Reynolds numbers, including laminar and turbulent regimes, are calculated and compared to experimental data and numerical results in the literature.

  • PDF

비정렬 격자를 이용한 구 주위의 큰에디 모사 (LARGE EDDY SIMULATION OF THE FLOW AROUND A SPHERE WITH UNSTRUCTURED MESH)

  • 이경세;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.41-44
    • /
    • 2007
  • A large eddy simulation method with unstructured mesh is presented. Two explicit filtering procedures are adopted for reducing the aliasing error of the nonlinear convective term and measuring the level of subgrid scale velocity fluctuation, respectively. The developed subgrid scale model is basically an eddy viscosity model which depends on both local velocity fluctuation level and local grid scale. As a validation problem, the flows around a sphere of several Reynolds numbers are simulated and some characteristic quantities are compared to experimental data and numerical results in the literature.

  • PDF