• Title/Summary/Keyword: eddy current method

Search Result 371, Processing Time 0.023 seconds

Intercomparisonn of Techniques for Pressure Tube Inspection of Pressurized heavy Water Reactor (가압 중수로형 원자력발전소 압력관 비파괴검사기술의 상호비교)

  • Lee, Hee-Jong;Kim, Yong-Si;Yoon, Byung-Sik;Lee, Young-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.294-303
    • /
    • 2005
  • This paper describes the analysis results of a series f Round-Robin test that was performed to intercompare inspection and diagnosis techniques for characterization of pressure tube f a pressurized heavy water reactor under the Coordinated Research Project(CRP) of IAEA's nuclear Power Programme. For this test, six nations, Korea, Canada, India, Argentina, Rumania, and China that currently have pressurized heavy water reactors under operation involved, and the "KOR-1" pressure tube sample prepared by Korea was used. Two kinds of NDE technique, ultrasonic and eddy current test, were applied for these tests. The "KOR-1" pressure tube sample contains total 12 artificial flaws such as crack-like EDM notches, wear that is similar to the real flaws and can be produced on the pressure tubes during plant operation. Test results showed that seven laboratories from six nations detected all twelve flaws in "KOR-1" specimen by using ultrasonic and eddy current test methods, and ultrasonic test method was more accurate than eddy current test method in flaw detectin and sizing. ID flaws in pressure tube sample were more easily detected and accurately sized than OD flaws.

A Novel Flexible PCB Conductive Structure for Electrodynamic Bearings and Measurement in its Induced Voltage

  • Ding, Guoping;Sandtner, Jan;Bleuler, Hannes
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2001-2008
    • /
    • 2015
  • This paper proposes the concept of FlexPCB(flexible Printed Circuit Board) conductive structure for electrodynamic bearings. It has three main advantages: easy “printing” of considerably thin conductive wires, resulting in potential reduction in stray eddy currents; realization of specific conductive configurations with high precision to optimize the eddy current flowing; simplicity in being wound to cylinders or hollow cylinders of different diameters. To verify this new concept, the FlexPCB conductive structure was manufactured, an axial electrodynamic bearing test rig was built and the conductive structure's induced voltage was measured along the axial displacements from 0mm to 56mm at three rotating speeds. The finite element method was used to calcuatlate the flux density of electrodynamic bearing and induced voltage of the FlexPCB conductive structure. The experimental results are compared with the results from the FEM calculation. It is concluded that the measured and calculated induced voltages have consistency in the middle part of the bearing.

Core-loss reduction on PM for IPMSM with concentrated winding (집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감)

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1832-1837
    • /
    • 2011
  • This paper presents the optimal permanent magnet shape on the rotor of an interior permanent magnet motor to reduce the core losses and improve the performance. As permanent magnet has conductivity inherently, it causes huge amount of eddy current losses by the slot harmonics with concentrated winding. This loss is roughly 100 times larger than that of distributed winding in high speed operation and it cannot be ignored, especially on traction motors. Each eddy current loss on permanent magnet has been investigated in detail by using FEM(Finite Element Method) instead of EMCNM(Equivalent Magnetic Circuit Network Method) in order to consider saturation and non-linear magnetic property. Simulation-based DOE(Design Of Experiment) is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, the core loss reduction on the proposed shape of the permanent magnet is verified by FEM.

  • PDF

A Basic Study on Eddy Current Testing of End-Cap Welds (봉단 용접부 와전류탐상의 기초적인 연구)

  • Suh, D.M.;Sim, K.S.;Kwon, W.J.;Kim, J.H.;Park, C.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.85-91
    • /
    • 1998
  • In nuclear fuel manufacturing process, end-closure welding has long been recognized as requiring very high integrity. In this basic study, ECT(eddy current testing) method for end-closure welding has been developed to detect end cap weld discontinuities for nuclear fuel safety. In order to improve the inspection reliability, the maximum scanning speed and the maximum frequency is investigated for end-closure welding inspection. The bandpass filter(0-250Hz) is used for removing noise effects. This study shows that ECT method is effective and sensitive for the detection of small defect(0.35mm diameter).

  • PDF

A Study Iron Losses On the Cable Racks adjacent to Under Ground Power Cable (지중전력 케이블에 근접한 지지물의 철손에 관한 연구)

  • 전승구;김기흥
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.3
    • /
    • pp.71-77
    • /
    • 1996
  • This paper is described on the eddy current for a peripheral magnetic objects of under ground power cable. The materials of cable rack is used FRP and SUS in the place of iron. Each specimen were measureed for eddy current loss and Hysteresis loss by Epstein's method. The results is compared each other. Hysteresis loss is inversely proportional to $\textrm{f}^{0.6}$ of frequence as supply voltage is constant. Also, iron loss is increased to 0.86 times for varinace of frequency from 60[Hz] to 50[Hz] as a maxium flux density is constant. In the case of Fe, Hysteresis loss is above 70[% ] of total iron loss. In the other hand, SUS is decreased to go[%] of Fe. by the simulation results using Loss Program Package. The iron loss of materials SUS, FRP is near zeor by Epstein's method.

  • PDF

Study in Post-Assembly Magnetization of Line Start Permanent Magnet Motor (영구자석 매입형 유도동기전동기의 조립 후 착자에 대한 연rn)

  • 이철규;권병일
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.373-380
    • /
    • 2003
  • This paper consists of a study in post-assembly magnetization of LSPM (Line Start Permanent Magnet Motor). Recently, LSPM is noted as an alternative to the induction motor because it offers a very high efficiency and unity power factor, And it is necessary for permanent magnets to be magnetized by means of post-assembly magnetization in LSPMS because of the manufacturing cost involved. The manufacturing process is also simpler in post-assembly magnetization than in pre-assembly magnetization. Generally, permanent magnet motors are magnetized by their own stator coil or by magnetizing fixtures. However, the permanent magnet in a LSPM is scarcely magnetized by using them because of the eddy current of the rotor bar. Hence, it is necessary to design a magnetizing fixture that overcomes this problem. In this paper, the author analyses the post-assembly magnetization of a LSPM and proposes a method for designing the magnetizing fixture. The method that the author proposes is to make the number of coil turns greater in order to reduce the effect of the eddy current of the rotor bars.

Optimal Design of the Induction Heating Coil using Transient Design Sensitivity Analysis (과도상태 설계민감도를 이용한 유도가열코일의 최적설계)

  • Kwak, In-Gu;Byun, Jin-Kyu;Choi, Kyung;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.327-337
    • /
    • 2000
  • In this paper, the design sensitivity formula for the control of the transient temperature distribution is developed using the direct differentiation method, and used for the optimal design of induction heating coil position. The temperature distribution is calculated using the heat source of the induced eddy current and heat diffusion equation. The physical property variations of the workpiece depending on the temperature are considered. The eddy current distribution and the temperature distribution are calculated with the 2D finite element procedure. The adjoint variable technique is employed in expressing the design sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region of the sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region of the workpiece. The numerical example shows that the proposed design sensitivity analysis for the control of the transient temperature distribution is very useful and practical in the optimal design of induction heating coils.

  • PDF

A Study of Dynamic Characteristic Analysis for Hysteresis Motor Using Permeability and Load Angle by Inverse Preisach Model (역 프라이자흐 모델에 의한 투자율과 부하각을 이용한 히스테리시스 전동기의 동적 특성 해석 연구)

  • Kim, Hyeong-Seop;Han, Ji-Hoon;Choi, Dong-Jin;Hong, Sun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.2
    • /
    • pp.262-268
    • /
    • 2019
  • Previous dynamic models of hysteresis motor use an extended induction machine equivalent circuit or somewhat different equivalent circuit with conventional one, which makes unsatisfiable results. In this paper, the hysteresis dynamic characteristics of the motor rotor are analyzed using the inverse Preisach model and the hysteresis motor equivalent circuit considering eddy current effect. The hysteresis loop for the rotor ring is analyzed under full-load voltage source static state. The calculated hysteresis loop is then approximated to an ellipse for simplicity of dynamic computation. The permeability and delay angle of the elliptic loop apply to the dynamic analysis model. As a result, it is possible to dynamically analyze the hysteresis motor according to the applied voltage and the rotor material. With this method, the motor speed, generated torque, load angle, rotor current as well as synchronous entry time, hunting effect can be calculated.

Analysis of Induction Heating by Using FEM (유한요소법을 이용한 유도가열 해석)

  • 윤진오;양영수
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.66-68
    • /
    • 2004
  • Induction heating is a process that is accompanied with magnetic and thermal situation. When the high-frequency current flows in the coil, induced eddy current generates heat to conductor. To simulate an induction heating process, the finite element analysis program was developed. A coupling method between the magnetic and thermal routines was developed. In the process of magnetic analysis and thermal analysis, magnetic material properties and thermal material properties depending on temperature are taken into consideration. In this paper, to predict the angular deformation, temperature difference and the shape of heat affected zone were discussed. Also appropriate coil shape for maximum angular deformation were proposed.

  • PDF

Reduction of Leakage Magnetic Fields in Low Frequency WPT System Using Soft Magnetic Materials (연자성체를 이용한 저주파 무선전력전송 시스템의 누설 자기장 저감)

  • Lee, In-Gon;Kim, Nam;Cho, In-Kui;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.76-79
    • /
    • 2017
  • This paper presents the electromagnetic shielding structure for low frequency wireless power transfer system with magnetic induction method using soft magnetic materials. Soft magnetic materials have advantages such as high permeability and low magnetic loss, but have undesirable effect of power loss by eddy current. To overcome this, we proposed the patterned soft magnetic material to suppress the eddy current path. For validity of this paper, we simulated the coil transfer efficiency and the radiated electromagnetic field, and fabricated the proposed structure using 79-permalloy. The measured results shows good agreements with the simulated results and reduction of the radiated electromagnetic field compared to commercial ferrite plate.