• Title/Summary/Keyword: eddy current distribution

Search Result 126, Processing Time 0.032 seconds

도전성 및 자성 차폐체의 차폐효과 해석과 차폐인수 산정 (Analysis of Shielding Effectiveness and Estimation of Shielding Factor in Conductive and Magnetic Shields)

  • 강대하
    • 조명전기설비학회논문지
    • /
    • 제27권10호
    • /
    • pp.30-40
    • /
    • 2013
  • In this study the method based on flux linkage in cell was introduced in calculation of eddy currents by cell method. According to this method eddy current distribution and the loss can be evaluated and since the shielding effectiveness by flux cancelation of eddy current can be analyzed, this method is applicable to design of conductive shield. And also the formula of shielding factor were so deduced as to be applicable to finite-width infinite-length shielding sheets and infinite-length underground cable shield. These formula are adaptable to magnetic materials as well as conductive materials. As the results of calculation in model shields are follows. In case of finite-width infinite-length shielding sheet, shielding effectiveness increases with increasing of conductivity. In case of infinite-length underground cable shield, the effectiveness become higher with increasing of permeability. Especially the effectiveness is very high in materials with both high conductivity and permeability in underground cable shield.

금오도-안도 협수로 해역의 조류 및 조석잔차류 특성 (Characteristics of tidal current and tidal induced residual current in the channel between Geumo Island and An Island in the southern waters of Korea)

  • 추효상
    • 수산해양기술연구
    • /
    • 제57권3호
    • /
    • pp.214-227
    • /
    • 2021
  • The distribution of tidal current and tidal induced residual current, topographical eddies and tidal residual circulation in the waters surrounding the Geumo Island-An Island channel were identified through numerical model experiments and vorticity balance analysis. Tidal current flows southwest at flood and northeast at ebb along the channel. The maximum flow velocity was about 100-150 cm/s in neap and spring tide. During the flood current in the neap tide, clockwise small eddies were formed in the waters west of Sobu Island and southwest of Daebu Island, and a more grown eddy was formed in the southern waters of Geumo Island in the spring tide. A small eddy that existed in the western waters of Chosam Island during the ebb in neap tide appeared to be a more grown topographical eddy in the northeastern waters of Chosam Island in spring tide. Tidal ellipses were generally reciprocating and were almost straight in the channel. These topographical eddies are made of vorticity caused by coastal friction when tidal flow passes through the channel. They gradually grow in size as they are transported and accumulated at the end of the channel. When the current becomes stronger, the topographic eddies move, settle, spread to the outer sea and grow as a counterclockwise or clockwise tidal residual circulation depending on the surrounding terrain. In the waters surrounding the channel, there were counterclockwise small tidal residual circulations in the central part of the channel, clockwise from the northeast end of the channel to northwest inner bay of An Island, and clockwise and counterclockwise between Daebu Island and An Island. The circulation flow rate was up to 20-30 cm/s. In the future, it is necessary to conduct an experimental study to understand the growth process of the tidal residual circulation in more detail due to the convergence and divergence of seawater around the channel.

가공 배전선로 진단시스템을 위한 최적 센서 개발 (Development of Optimal Sensor for Diagnostic System in Overhead Distribution Power Lines)

  • 이경섭
    • 한국전기전자재료학회논문지
    • /
    • 제28권10호
    • /
    • pp.670-675
    • /
    • 2015
  • Degradation diagnosis of cable is one of major issues for operation and maintenance in overhead distribution power lines. The diagnostic system for overhead power lines is composed of three parts in functional aspect - a travelling unit, a sensing unit and a communication unit. Among them, sensor detects the defects such as corrosion and disconnecting of power lines. Performance of sensor is very important, and besides, the size and structure of sensor is restricted for installation to small and lightweight diagnostic system. This paper suggests an optimal eddy current sensor best suit for small and lightweight diagnostic system in consideration of detecting performance, size and ease of installation and so on. Proposed sensor has been designed by Drum core structure and can be applied to the all domestic overhead power lines regardless of the cross-sectional areas. Also, it is showed that results of mock environmental test are satisfied.

22.9kV 배전선로 절연전선 검출용 와류탐상 센서 특성 연구 (A Study of Properties Eddy Current Sensor for 22.9kv Distribution Insulation Cable)

  • 오용철;김탁용;이경섭;정한석;유재식;양정권;이재봉;이건행;김종현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.2140_2141
    • /
    • 2009
  • We used the eddy current sensor for a 22.9kV distribution power line insulation cable diagnosis. The insulation cable which is used in the 22.9kV distribution power line is having element wire from 6 to 18. Consequently, currently to ECT applications it has a limit in the distribution power line. We about under producing to apply in pick-up coil forms and the differential total coil form where becomes sum of zero in order to have. From measurement result, partial broken cable was confirmed 500 mV~980 mV changes from normal state.

  • PDF

Magnetic Dipole Model in an Eddy Current Flow Detection for a Nondestructive Evaluation

  • Han, S.G.;Kang, J.H.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.266-270
    • /
    • 1999
  • A SQUID magnetometer or a SQUID gradiometer can be used to measure the field or gradient distribution, respectively. We describe the magnetic dipole model of the eddy currents in a nondestructive evaluation. Such a theoretical calculation of the magnetic dipole fields produced by a deep flaw in metallic materials can be used in aerospace and transportation industries.

  • PDF

전압원이 인가된 도체 내에서의 와전류 분포 해석 (Calculation of Eddy Current Distribution in Conducting Bulk with Voltage Source)

  • 김도완;정현교;한송엽
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권1호
    • /
    • pp.9-14
    • /
    • 2000
  • When current flows through a thick conductor such, most of the current flows along outside of the conductor, which is called skin effect. This paper represents a method calculating such a current distribution in the conductor region. The conductor region is divided into some pieces and each piece has its own unknown variable, i.e. current density. The governing equation which expresses Maxwell's equation is combined with the circuit equation with voltage source. The combined equation is solved to obtain current distribution in the conductor. This algorithm is applied to EMC(Electromagnetic Casting) to calculate current density with voltage source.

  • PDF

CANDU형 핵연료 채널 압력관에 대한 원거리장 와전류의 자제분포 특성해석(I) (A FEM Analysis of Remote Field Eddy Current Distribution Characteristics to CANDU Fuel Channel Tube(I))

  • 허형;정현규;김건중
    • 비파괴검사학회지
    • /
    • 제22권1호
    • /
    • pp.59-64
    • /
    • 2002
  • CANDU형 핵연료채널 압력관(Zr-2.5%Nb)과 calandria관(Zircaloy-2)에 대한 원격장 와전류탐상의 자계분포특성을 파악하기 위하여 유한요소 해석을 수행하였다. 압력관과 칼란드리아관의 전자기장 분포와 위상각 해석을 통하여 최적 검사 주파수와 감지코일의 위치를 평가하였다. 또한 축대칭 구조물(Al-ring과 Al-block)이 공존시 파라미터해석을 통하여 원격장 와전류의 특성을 평가하였다.

프라이자흐 모델과 유한요소법을 이용한 C.P.M의 착자 특성 해석 (Magnetizing Analysis of a Convergence Purity Magnet using Preisach model and Finite Element Method)

  • 윤태호;권병일;박승찬;우경일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권11호
    • /
    • pp.729-736
    • /
    • 2000
  • This paper deals with the characteristic analysis of magnetizer for convergence purity magnet by the finite element method. The analysis utilizes combined method of the time-stepped finite element analysis and the Preisach model with hysteresis phenomena. In the finite element analysis, the non-linearity and the eddy current of the magnetizing fixure and permanent-magnet are taken account. The magnetization distribution in the permanent magnet is determined by using Preisach model which are composed of Everett function table and the first order transition curves is obtained by the Vibrating Sample Magnetometer. The calculated flux density values on the surface of the permanent magnet are led to the approximated gauss density values measured by the gauss meter. As a result, winding current, copper loss, eddy current loss of the magnetizing yoke, flux plot, surface gauss plot, temperature rise of the coil and resistor variation, vector diagram of magnetization distribution are shown.

  • PDF