• 제목/요약/키워드: eddy current distribution

검색결과 128건 처리시간 0.026초

Magnetic dipole model in an eddy current flow detection for a Nondestructive evaluation

  • Han, S.G.;Kim, J.Y.;Kang, J.H.
    • Progress in Superconductivity
    • /
    • 제1권1호
    • /
    • pp.26-30
    • /
    • 1999
  • A SQUID magnetometer or a SQUID gradiometer can be used to measure the field or gradient distribution respectively. We describe the magnetic dipole model of the eddy current for the nondestructive evaluation. Such a theoretical calculation of the magnetic dipole field produced by a deep flaw in matalic materials can be used for aerospace and transportation fields.

  • PDF

Research on the Influence of Inter-turn Short Circuit Fault on the Temperature Field of Permanent Magnet Synchronous Motor

  • Qiu, Hongbo;Yu, Wenfei;Tang, Bingxia;Yang, Cunxiang;Zhao, Haiyang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1566-1574
    • /
    • 2017
  • When the inter-turn short circuit (ITSC) fault occurs, the distortion of the magnetic field is serious. The motor loss variations of each part are obvious, and the motor temperature field is also affected. In order to obtain the influence of the ITSC fault on the motor temperature distribution, firstly, the normal and the fault finite element models of the permanent magnet synchronous motor (PMSM) were established. The magnetic density distribution and the eddy current density distribution were analyzed, and the mechanism of loss change was revealed. The effects of different forms and degrees of the fault on the loss were obtained. Based on the loss analysis, the motor temperature field calculation model was established, and the motor temperature change considering the loop current was analyzed. The influence of the fault on the motor temperature distribution was revealed. The sensitivity factors that limit the motor continuous operation were obtained. Finally, the correctness of the simulation was verified by experiments. The conclusions obtained are of great significance for the fault and high temperature demagnetization of the permanent magnet analysis.

Characteristics of a Warm Eddy Observed in the Ulleung Basin in July 2005

  • Shin, Chang-Woong
    • Ocean and Polar Research
    • /
    • 제31권4호
    • /
    • pp.283-296
    • /
    • 2009
  • Oceanographic survey data were analyzed to understand the characteristics of a warm eddy observed in the Ulleung Basin in July 2005. The temperature distribution at 200 db and vertical sections provided evidence of the warm eddy in the Ulleung Basin (UWE05). Based on the 5$^{\circ}C$ isothermal line on 200 db temperature, the major axis was 160 km from southwest to northeast, and the minor axis was 80 km from southeast to northwest. The homogeneous layer in the thermocline of UWE05 had mean values of 10.40$^{\circ}C$ potential temperature, 34.35 psu salinity, and 26.37 kg/m$^3$ potential density (${\sigma}_{\theta}$) and provided evidence that UWE05 also existed during the winter of 2004-2005. A warm streamer initially flowed along the circumference of UWE05 and mixed with the upper central water. Two northward current cores were found on the western side of the measured current section at the central latitude of UWE05. One was the East Korean Warm Current (EKWC) and the other was the main stream of the western part of UWE05. Geostrophic transport of the upper layer (from the surface to the isopycnal surface of 26.9 ${\sigma}_{\theta}$) was approximately 2.5 Sv in the eastern side of UWE05. However, the measured transport was twice as large as the geostrophic transport. Mass conservation of geostrophic transport was well satisfied in the upper layer. The direct current measurements and geostrophic transport analysis showed that the EKWC meandered around UWE05.

고온 초전도 Electronic Gradiometer의 제작과 NDE system 에의 응용 (Fabrication of an HTS DC SQUID Electronic Gradiometer and it's application in NDE system)

  • 김진영;한성건;강준희;이은홍;송이헌
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.120-123
    • /
    • 1999
  • We designed and constructed a non-destructive evaluation system using an HTS DC SQUID electronic gradiometer. Our DC SQUID electronic gradiometer is composed of two DC SQUID magnetometers. The system included a non-magnetic stainless steel cryostat and a set of coaxial exciting coils, which were used to induce an eddy current in the test material. We also have calculated the eddy current density produced by an exciting coil in any direction of the testing object. We could compute the eddy current density distribution in 3D. The SQUIDs were computer controlled and the output data from the electronic gradiometer was obtained by using a Labview software.

  • PDF

Design and Construction of an HTS DC SQUID Electronic Gradiometer NDE system

  • Kim, J.Y.;Han, S.G.;Kang, J.H.;Lee, E.H.;Song, I.H.
    • Progress in Superconductivity
    • /
    • 제1권2호
    • /
    • pp.115-119
    • /
    • 2000
  • We designed and constructed a non-destructive evaluation system using an HTS DC SQUID electronic gradiometer. Our DC SQUID electronic gradiometer is composed of two DC SQUID magnetometers. The system included a non-magnetic stainless steel cryostat and a set of coaxial exciting coils, which were used to induce an eddy current in the test piece. We also have calculated the eddy current density produced by an exciting coil in any direction of the testing object. We could compute the eddy current density distribution in 3D. The SQUIDs were computer controlled and the output data from the electronic gradiometer was obtained by using a Labview software.

  • PDF

유한요소법에 의한 단1차 단2차 편측식 선형 유도전동기의 2차측 와전류 분포 해석에 관한 연구 (A study on the secondary side eddy current distribution analysis of a short primary-short secondary single-sided LIM by the finite element method)

  • 임달호;김학련;조윤현;김동진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.31-33
    • /
    • 1989
  • In this paper, a short primary-short secondary single-sided LIM which is used as a driving source for automatic conveyor system, is selected as a analysis model. And with a method for analyzing eddy current distribution and thrust force which are produced according to the relative position of primary and secondary, FEM in which current vector potential is introduced is adopted. Also, analysis results are compared with experimental results, so propriety of this at study is proved.

  • PDF

단1차 단2차 편측식 선형 유도전동기의 유한요소법에 의한 2차측 와전류 분포해석에 관한 연구 (A Study on the Secondary Side Eddy Current Distribution Analysis of a Short Primary-Short Secondary Single-Sided LIM by the Finite Element Method)

  • 임달호;조윤현
    • 대한전기학회논문지
    • /
    • 제39권5호
    • /
    • pp.453-461
    • /
    • 1990
  • In this paper, a short primary-short secondary single-sided linear induction motor which is used as the driving source for an automatic conveyor system, is selected as an analysis model. The finite element method in which the current vector potential is introduced is adopted to analyze the eddy current distribution and thrust force which are produced according to the relative position of the primary and the secondary. Also, the analysis results are compared with experimental ones, to show the propriety of this model.

  • PDF

과도상태 설계민감도를 이용한 유도가열코일의 최적설계 (Optimal Design of the Induction Heating Coil using Transient Design Sensitivity Analysis)

  • 곽인구;변진규;최경;한송엽
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권5호
    • /
    • pp.327-337
    • /
    • 2000
  • In this paper, the design sensitivity formula for the control of the transient temperature distribution is developed using the direct differentiation method, and used for the optimal design of induction heating coil position. The temperature distribution is calculated using the heat source of the induced eddy current and heat diffusion equation. The physical property variations of the workpiece depending on the temperature are considered. The eddy current distribution and the temperature distribution are calculated with the 2D finite element procedure. The adjoint variable technique is employed in expressing the design sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region of the sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region of the workpiece. The numerical example shows that the proposed design sensitivity analysis for the control of the transient temperature distribution is very useful and practical in the optimal design of induction heating coils.

  • PDF

종자계형 진공 인터럽터에서 접점전극 슬릿의 영향에 관한 연구 (A Study on the Effect of the Contact Electrode Slits in the Vacuum Interrupter with Axial Magnetic Field Type)

  • 하덕용;강형부;최승길;최경호
    • 한국전기전자재료학회논문지
    • /
    • 제15권9호
    • /
    • pp.822-829
    • /
    • 2002
  • This paper deals with the distribution characteristics of the current density and axial magnetic flux density for each slits made on the contact electrode in the vacuum interrupter with axial magnetic field type using 3-dimension finite element analysis. It has been known that the presence of an axial magnetic field parallel to the current flow in the arc plasma can increase the high current breaking capacity of vacuum interrupter by carrying out the arc plasma from constricted mode to diffusion mode. The axial magnetic field is created of itself by current flow in the segments of coil electrode behind the contact electrode. The analyzed results show that if the slits are made in the contact electrode, they can increase the current density and axial magnetic flux density in the contact electrode surface and at the gap distance, which is due to decrease the effect of eddy currents flowing in the contact electrode. The phase shift due to eddy currents, defined 3s time difference between the maximum value of current and axial magnetic field, is decreased still more by increasing the number of slits made in the contact electrode at the center point of gap distance. These results demonstrate that 3-dimension finite element analysis has a great deal of merits in the development and evaluation of new electrode at the design of vacuum interrupter.

154 kV 단상 전력 케이블의 금속 Sheath에서 발생하는 와전류 분포 및 손실 분석 (Analysis of Eddy Current Distribution and Loss in Metal Sheath of 154 kV Single Power Cable)

  • 임상현;김경윤;김기병;박관수
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권2호
    • /
    • pp.115-118
    • /
    • 2020
  • 최근 에너지 손실 저감에 대한 관심이 높아짐에 따라, 전력 케이블에서 발생하는 손실에 대한 예측이 중요해지고 있다. 송전 시스템에서 전체적인 손실은 측정이 가능하지만 각각의 내부 구조물에서 발생하는 손실에 대한 연구는 미비한 상황이다. 송전 손실에는 다양한 요인이 있고, 그 중 선행 연구에 의하여 주변 금구류와 같은 외부 요인들에 대한 손실은 연구가 진행되었지만 케이블 내부 손실에 대한 연구는 부족한 상황이다. 케이블 내부의 금속 Sheath는 높은 도전율을 가지는 알루미늄으로 제작되었기 때문에, 도체에 흐르는 전류에 의하여 와전류가 발생하게 되고, 이에 따라 와전류 손실이 필연적으로 발생하게 된다. 그러므로 본 논문에서는 케이블의 금속 Sheath에서 발생하는 와전류 손실에 대하여 연구를 진행하였다.