• 제목/요약/키워드: ectopic

검색결과 547건 처리시간 0.029초

Human selenium binding protein-1 (hSP56) is a negative regulator of HIF-1α and suppresses the malignant characteristics of prostate cancer cells

  • Jeong, Jee-Yeong;Zhou, Jin-Rong;Gao, Chong;Feldman, Laurie;Sytkowski, Arthur J.
    • BMB Reports
    • /
    • 제47권7호
    • /
    • pp.411-416
    • /
    • 2014
  • In the present study, we demonstrate that ectopic expression of 56-kDa human selenium binding protein-1 (hSP56) in PC-3 cells that do not normally express hSP56 results in a marked inhibition of cell growth in vitro and in vivo. Down-regulation of hSP56 in LNCaP cells that normally express hSP56 results in enhanced anchorage-independent growth. PC-3 cells expressing hSP56 exhibit a significant reduction of hypoxia inducible protein (HIF)-$1{\alpha}$ protein levels under hypoxic conditions without altering HIF-$1{\alpha}$ mRNA (HIF1A) levels. Taken together, our findings strongly suggest that hSP56 plays a critical role in prostate cells by mechanisms including negative regulation of HIF-$1{\alpha}$, thus identifying hSP56 as a candidate anti-oncogene product.

Phosphorylation of p53 at threonine 155 is required for Jab1-mediated nuclear export of p53

  • Lee, Eun-Woo;Oh, Wonkyung;Song, Hosung Paul;Kim, Won Kon
    • BMB Reports
    • /
    • 제50권7호
    • /
    • pp.373-378
    • /
    • 2017
  • The Jun activation-domain binding protein 1 (Jab1) induces p53 nuclear export and cytoplasmic degradation, but the underlying mechanism is poorly understood. Here, we show that phosphorylation at the threonine 155 residue is essential for Jab1-mediated p53 nuclear export. Jab1 stimulated phosphorylation of p53 at T155 was inhibited by curcumin, an inhibitor of COP9 signalosome (CSN)-associated kinases. The T155E mutant, which mimics phosphorylated p53, exhibited spontaneous cytoplasmic localization in the absence of Jab1. This process was prevented by leptinomycin B (LMB), but not by curcumin. The substitution of threonine 155 for valine (T155V) abrogated Jab1-mediated p53 nuclear export, indicating that phosphorylation at this site is essential for Jab1-mediated regulation of p53. Although T155E can be localized in the cytoplasm in the absence of Mdm2, the translocation of T155E was significantly enhanced by ectopic Hdm2 expression. Our data suggests that Jab1-mediated phosphorylation of p53 at Thr155 residue mediates nuclear export of p53.

Clinical Experiences of Gamete Intrafallopian Transfer (GIFT) Procedure (Gamete Intrafallopian Transfer(GIFT)방법의 임상체험에 관한 고찰)

  • Song, J.S.;Park, Y.S.;Kye, Y.S.;Kim, E.I.;Hur, K.O.;Han, C.W.;Mok, Y.J.
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제17권2호
    • /
    • pp.145-151
    • /
    • 1990
  • This study was carried out to elevating the pregnancy rate in infertile patient by Gamete intrafallopian transfer (GIFT). The GIFT program was performed from July 1988 to June 1990. Of the 131 cycles, the mean age of patient was 31.6 years and the mean duration of infertility was 5.3 years. 41 patients became pregnant, for a pregnancy rate of 31.3%. 5 preclinical abortions and 6 clinincal abortion was occured. 2 ectopic pregnanices and 1 combined pregnancy were occured. 7 twin pregnancies and 1 triplet were occured (multiple pregnancy rate;22.2%). 11 pregnancies were term delivered, 17 are ongoing pregnancies. GIFT may be considered as an alternative to in vitro fertilazation in infertility cases in which at least one fallopian tube is patent.

  • PDF

Expression, Refolding, and Characterization of the Proteolytic Domain of Human Bone Morphogenetic Protein 1 (뼈형성 단백질(Bone Morphogenetic Protein 1)의 단백질 분해 부위의 발현 및 특성 연구)

  • ;Daihung Do
    • Journal of Life Science
    • /
    • 제10권2호
    • /
    • pp.218-227
    • /
    • 2000
  • Bone morphogenetic protein 1 (BMP-1) is part of a complex capable of inducing ectopic bone formation in mammals. Studies on TGF-β1 processing and Drosophila dorsal-ventral patterning have focused attention on BMP-1 as important in mediating the biological activity of this bone inducing complex. Herein, the bacterial expression, refolding, purification, and initial characterization of the BMP-1 proteolytic domain (BPD) are described. A semi-quantitative fluorescence-based thin layer chromatography assay was developed to assist in rapidly screening for optimal renaturation conditions. According to a preliminary screen for optimal conditions for the refolding of BPD , a detectable proteolytic activity against a high turnover substrate for astacin, a homologous protease from crayfish was observed. The conditions identified have allowed the expression of sufficient amounts of BPD for the characterization of the protein. Its proteolytic activity exhibits the same cleavage specificity as astacin against seven substrates that were previously synthesized for studying astacin. Furthermore, this activity is inhibited by the metal chelator 1,10-phenanthroline but not by its analogue 1,7-phenanthroline. The collagenase inhibitor Pro-Leu-Gly hydroxamate was found to inhibit both astacin and BPD activity. The results presented in this paper argue that BMP-1 does in fact possess an intrinsic proteolytic activity.

  • PDF

Development of a Reporter System for In Vivo Monitoring of γ-Secretase Activity in Drosophila

  • Hong, Young Gi;Roh, Seyun;Paik, Donggi;Jeong, Sangyun
    • Molecules and Cells
    • /
    • 제40권1호
    • /
    • pp.73-81
    • /
    • 2017
  • The ${\gamma}$-secretase complex represents an evolutionarily conserved family of transmembrane aspartyl proteases that cleave numerous type-I membrane proteins, including the ${\beta}$-amyloid precursor protein (APP) and the receptor Notch. All known rare mutations in APP and the ${\gamma}$-secretase catalytic component, presenilin, which lead to increased amyloid ${\beta}$-peptide production, are responsible for early-onset familial Alzheimer's disease. ${\beta}$-amyloid protein precursor-like (APPL) is the Drosophila ortholog of human APP. Here, we created Notch- and APPL-based Drosophila reporter systems for in vivo monitoring of ${\gamma}$-secretase activity. Ectopic expression of the Notch- and APPL-based chimeric reporters in wings results in vein truncation phenotypes. Reporter-mediated vein truncation phenotypes are enhanced by the Notch gain-of-function allele and suppressed by RNAi-mediated knockdown of presenilin. Furthermore, we find that apoptosis partly contributes to the vein truncation phenotypes of the APPL-based reporter, but not to the vein truncation phenotypes of the Notch-based reporter. Taken together, these results suggest that both in vivo reporter systems provide a powerful genetic tool to identify genes that modulate ${\gamma}$-secretase activity and/or APPL metabolism.

CD133 Regulates IL-1β Signaling and Neutrophil Recruitment in Glioblastoma

  • Lee, Seon Yong;Kim, Jun-Kyum;Jeon, Hee-Young;Ham, Seok Won;Kim, Hyunggee
    • Molecules and Cells
    • /
    • 제40권7호
    • /
    • pp.515-522
    • /
    • 2017
  • CD133, a pentaspan transmembrane glycoprotein, is generally used as a cancer stem cell marker in various human malignancies, but its biological function in cancer cells, especially in glioma cells, is largely unknown. Here, we demonstrated that forced expression of CD133 increases the expression of IL-$1{\beta}$ and its downstream chemokines, namely, CCL3, CXCL3 and CXCL5, in U87MG glioma cells. Although there were no apparent changes in cell growth and sphere formation in vitro and tumor growth in vivo, in vitro trans-well studies and in vivo tumor xenograft assays showed that neutrophil recruitment was markedly increased by the ectopic expression of CD133. In addition, the clinical relevance between CD133 expression and IL-$1{\beta}$ gene signature was established in patients with malignant gliomas. Thus, these results imply that glioma cells expressing CD133 are capable of modulating tumor microenvironment through the IL-$1{\beta}$ signaling pathway.

Effect of PEL Exopolysaccharide on the wspF Mutant Phenotypes in Pseudomonas aeruginosa PA14

  • Chung, In-Young;Choi, Kelly B.;Heo, Yun-Jeong;Cho, You-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권7호
    • /
    • pp.1227-1234
    • /
    • 2008
  • Pseudomonas aeruginosa is an opportunistic human pathogen that produces and secretes exopolysaccharides (EPS), in which cells are embedded to form a highly organized community structure called biofilm. Here, we characterized the role of cyclic diguanylate (c-di-GMP) and EPS (PEL) overproduction in the wspF mutant phenotypes of P. aeruginosa PA14 (wrinkly appearance, hyperadherence, impaired motilities, and reduced virulence in acute infections). We confirmed that the elevated c-di-GMP level plays a key role in all the wspF mutant phenotypes listed above, as assessed by ectopic expression of a c-di-GMP-degrading phophodiesterase (PvrR) in the wspF mutant. In contrast, PEL EPS, which is overproduced in the wspF mutant, was necessary for wrinkly appearance and hyperadherence, but not for the impaired flagellar motilities and the attenuated virulence of the wspF mutant. These results suggest that c-di-GMP affects flagellar motility and virulence, independently of EPS production and surface adherence of this bacterium.

Changes in Apoptosis-related Gene Expression Induced by Repression of FGFR1 by RNA Interference in Embryonic Fibroblasts and Cancerous Cells from Chicken

  • Lee, Sang-In;Lee, Bo-Ram;Hwang, Young-Sun;Rengaraj, Deivendran;Han, Jae-Yong
    • Journal of Animal Science and Technology
    • /
    • 제52권6호
    • /
    • pp.521-527
    • /
    • 2010
  • Fibroblast growth factor receptor 1 (FGFR1) plays roles in angiogenesis, wound healing, and embryonic development via the regulation of cell proliferation, differentiation, and survival. It is well known that ectopic expression of FGFR1 is associated with cancer development. To characterize the function of FGFR1 in the normal and cancer cell lines DF-1 and DT40, respectively, we performed FGFR1 knockdown by RNA interference. In the DT40 cells, FGFR1 knockdown induced upregulation of FGFR2 and FGFR3 expression, downregulation of pro-apoptosis-related genes, and upregulation of anti-apoptosis-related genes. However, in DF-1 cells, FGFR1 knockdown induced upregulation of pro-apoptosis-related genes and downregulation of anti-apoptosis-related genes. Our data suggest that repression of FGFR1 induced upregulation of other FGF receptors and anti-apoptosis-related genes in cancer cells and pro-apoptosis-related genes in normal cells.

A Case of Intussusception Caused by Meckel's Diverticulum with Heterotopic Pancreatic and Gastric Tissues (이소성 췌장과 위점막을 가진 멕켈 게실에 의한 장중첩증 1예)

  • Kim, Mi Jin;Kim, Jae Young;Sul, Ji Young;Kang, Dae Young
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제9권1호
    • /
    • pp.75-79
    • /
    • 2006
  • Intussusception is a frequent cause of intestinal obstruction in early childhood and most are idiopathic in origin. In a minority of cases a definite pathological lead point is identified by imaging studying or during surgery. As the pathologic lead point of intussusception, Meckel's diverticulum is the most common lesion. In symptomatic patients, 40~60% of Meckel's diverticulum contain ectopic tissue, with gastric mucosa being far the most common type. A few Meckel's diverticulum contain pancreatic tissue. Combined heterotopic pancreatic and gastric tissues in the Meckel's diverticulum especially causing intussusception is extremely rare. We report the case of 5-year-old girl with an intussusception caused by Meckel's diverticulum containing both heterotopic gastric and pancreatic tissues.

  • PDF

USP44 Promotes the Tumorigenesis of Prostate Cancer Cells through EZH2 Protein Stabilization

  • Park, Jae Min;Lee, Jae Eun;Park, Chan Mi;Kim, Jung Hwa
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.17-27
    • /
    • 2019
  • Ubiquitin-specific protease 44 (USP44) has been implicated in tumor progression and metastasis across various tumors. However, the function of USP44 in prostate cancers and regulatory mechanism of histone-modifying enzymes by USP44 in tumors is not well-understood. Here, we found that enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, is regulated by USP44. We showed that EZH2 is a novel target of USP44 and that the protein stability of EZH2 is upregulated by USP44-mediated deubiquitination. In USP44 knockdown prostate cancer cells, the EZH2 protein level and its gene silencing activity were decreased. Furthermore, USP44 knockdown inhibited the tumorigenic characteristics and cancer stem cell-like behaviors of prostate cancer cells. Inhibition of tumorigenesis caused by USP44 knockdown was recovered by ectopic introduction of EZH2. Additionally, USP44 regulates the protein stability of oncogenic EZH2 mutants. Taken together, our results suggest that USP44 promotes the tumorigenesis of prostate cancer cells partly by stabilizing EZH2 and that USP44 is a viable therapeutic target for treating EZH2-dependent cancers.