• Title/Summary/Keyword: economic resource

Search Result 1,562, Processing Time 0.024 seconds

A Study on Industries's Leading at the Stock Market in Korea - Gradual Diffusion of Information and Cross-Asset Return Predictability- (산업의 주식시장 선행성에 관한 실증분석 - 자산간 수익률 예측 가능성 -)

  • Kim Jong-Kwon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.355-380
    • /
    • 2004
  • I test the hypothesis that the gradual diffusion of information across asset markets leads to cross-asset return predictability in Korea. Using thirty-six industry portfolios and the broad market index as our test assets, I establish several key results. First, a number of industries such as semiconductor, electronics, metal, and petroleum lead the stock market by up to one month. In contrast, the market, which is widely followed, only leads a few industries. Importantly, an industry's ability to lead the market is correlated with its propensity to forecast various indicators of economic activity such as industrial production growth. Consistent with our hypothesis, these findings indicate that the market reacts with a delay to information in industry returns about its fundamentals because information diffuses only gradually across asset markets. Traditional theories of asset pricing assume that investors have unlimited information-processing capacity. However, this assumption does not hold for many traders, even the most sophisticated ones. Many economists recognize that investors are better characterized as being only boundedly rational(see Shiller(2000), Sims(2201)). Even from casual observation, few traders can pay attention to all sources of information much less understand their impact on the prices of assets that they trade. Indeed, a large literature in psychology documents the extent to which even attention is a precious cognitive resource(see, eg., Kahneman(1973), Nisbett and Ross(1980), Fiske and Taylor(1991)). A number of papers have explored the implications of limited information- processing capacity for asset prices. I will review this literature in Section II. For instance, Merton(1987) develops a static model of multiple stocks in which investors only have information about a limited number of stocks and only trade those that they have information about. Related models of limited market participation include brennan(1975) and Allen and Gale(1994). As a result, stocks that are less recognized by investors have a smaller investor base(neglected stocks) and trade at a greater discount because of limited risk sharing. More recently, Hong and Stein(1999) develop a dynamic model of a single asset in which information gradually diffuses across the investment public and investors are unable to perform the rational expectations trick of extracting information from prices. Hong and Stein(1999). My hypothesis is that the gradual diffusion of information across asset markets leads to cross-asset return predictability. This hypothesis relies on two key assumptions. The first is that valuable information that originates in one asset reaches investors in other markets only with a lag, i.e. news travels slowly across markets. The second assumption is that because of limited information-processing capacity, many (though not necessarily all) investors may not pay attention or be able to extract the information from the asset prices of markets that they do not participate in. These two assumptions taken together leads to cross-asset return predictability. My hypothesis would appear to be a very plausible one for a few reasons. To begin with, as pointed out by Merton(1987) and the subsequent literature on segmented markets and limited market participation, few investors trade all assets. Put another way, limited participation is a pervasive feature of financial markets. Indeed, even among equity money managers, there is specialization along industries such as sector or market timing funds. Some reasons for this limited market participation include tax, regulatory or liquidity constraints. More plausibly, investors have to specialize because they have their hands full trying to understand the markets that they do participate in

  • PDF

Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining (텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안)

  • Kim, Ikjun;Lee, Junho;Kim, Hyomin;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.149-169
    • /
    • 2020
  • "The Urban Renewal New Deal project", one of the government's major national projects, is about developing underdeveloped areas by investing 50 trillion won in 100 locations on the first year and 500 over the next four years. This project is drawing keen attention from the media and local governments. However, the project model which fails to reflect the original characteristics of the area as it divides project area into five categories: "Our Neighborhood Restoration, Housing Maintenance Support Type, General Neighborhood Type, Central Urban Type, and Economic Base Type," According to keywords for successful urban regeneration in Korea, "resident participation," "regional specialization," "ministerial cooperation" and "public-private cooperation", when local governments propose urban regeneration projects to the government, they can see that it is most important to accurately understand the characteristics of the city and push ahead with the projects in a way that suits the characteristics of the city with the help of local residents and private companies. In addition, considering the gentrification problem, which is one of the side effects of urban regeneration projects, it is important to select and implement urban regeneration types suitable for the characteristics of the area. In order to supplement the limitations of the 'Urban Regeneration New Deal Project' methodology, this study aims to propose a system that recommends urban regeneration types suitable for urban regeneration sites by utilizing various machine learning algorithms, referring to the urban regeneration types of the '2025 Seoul Metropolitan Government Urban Regeneration Strategy Plan' promoted based on regional characteristics. There are four types of urban regeneration in Seoul: "Low-use Low-Level Development, Abandonment, Deteriorated Housing, and Specialization of Historical and Cultural Resources" (Shon and Park, 2017). In order to identify regional characteristics, approximately 100,000 text data were collected for 22 regions where the project was carried out for a total of four types of urban regeneration. Using the collected data, we drew key keywords for each region according to the type of urban regeneration and conducted topic modeling to explore whether there were differences between types. As a result, it was confirmed that a number of topics related to real estate and economy appeared in old residential areas, and in the case of declining and underdeveloped areas, topics reflecting the characteristics of areas where industrial activities were active in the past appeared. In the case of the historical and cultural resource area, since it is an area that contains traces of the past, many keywords related to the government appeared. Therefore, it was possible to confirm political topics and cultural topics resulting from various events. Finally, in the case of low-use and under-developed areas, many topics on real estate and accessibility are emerging, so accessibility is good. It mainly had the characteristics of a region where development is planned or is likely to be developed. Furthermore, a model was implemented that proposes urban regeneration types tailored to regional characteristics for regions other than Seoul. Machine learning technology was used to implement the model, and training data and test data were randomly extracted at an 8:2 ratio and used. In order to compare the performance between various models, the input variables are set in two ways: Count Vector and TF-IDF Vector, and as Classifier, there are 5 types of SVM (Support Vector Machine), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting. By applying it, performance comparison for a total of 10 models was conducted. The model with the highest performance was the Gradient Boosting method using TF-IDF Vector input data, and the accuracy was 97%. Therefore, the recommendation system proposed in this study is expected to recommend urban regeneration types based on the regional characteristics of new business sites in the process of carrying out urban regeneration projects."