• Title/Summary/Keyword: economic cycle

Search Result 922, Processing Time 0.024 seconds

An Empirical Study of Implementation and Application of Mold Life Cycle Management Information System In the Cloud Computing Environment (클라우드 컴퓨팅 환경에서 금형 수명주기관리 정보시스템 구축 및 적용의 실증적 연구)

  • Koh, Joon-Cheol;Nam, Seung-Done;Kim, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.331-341
    • /
    • 2014
  • Internet of Thing(IoT), which is recently talked about with the development of information and communication technology, provides big data to all nodes such as companies and homes, means of transportation etc. by connecting all things with all people through the integrated global network and connecting all actual aspects of economic and social life with Internet of Thing through sensor and software. Defining Internet of Thing, it plays the role of a connector of providing various information required for the decision-making of companies in the cloud computing environment for the Insight usage by collecting and storing Raw Data of the production site through the sensor network and extracting big data in which data is accumulated and Insight through this. In addition, as the industry showing the largest linkage with other root industries among root industries, the mold industry is the core technology for controlling the quality and performance of the final product and realizing the commercialization of new industry such as new growth power industry etc. Recently, awareness on the mold industry is changing from the structure of being labor-intensive, relying on the experience of production workers and repeating modification without the concept of cost to technology-intensive, digitization, high intellectualization due to technology combination according to IT convergence. This study, therefore, is to provide a golden opportunity to increase the direct and indirect expected effects in poor management activities of small businesses by actually implementing and managing the entire process of mold life cycle to information system from mold planning to mass production and preservation by building SME(small and medium-sized enterprises)-type mold life cycle management information system in the cloud computing environment and applying it to the production site.

A Scheme of Better Utilization of PWR Spent Fuels (가압경수로 사용후핵연료 이용확대 방안연구)

  • Chung, B.J.;Kang, C.S.
    • Nuclear Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.165-173
    • /
    • 1991
  • The recycle of PWR spent fuels in a CANDU reactor, so called the tandem fuel cycle is Investigated in this study. This scheme of utilizing Pm spent fuels will ease the shortage of spent fuel storage capacity as well as will improve the use of uranium resources. The minimum modification to the design of present CANDU reactor is seeked in the recycle. Nine different fuel types are considered in this work and are classified into two categories: refabrication and reconfiguration For refabrication, PWR spent fuels are processed and refabricated into the present 37 rod lattice structure of fuel bundle, and for reconfiguration, meanwhile, spent fuels are simply disassembled and rods are cut to fit into the present grid configuration of fuel bundle without refabrication. For each fuel option, the neutronics calculation of lattice was conducted to evaluate the allowable burnup and power distribution. The fuel cycle cost of each option was also computed to assess the economic justification. The result show that most tandem fuel cycle options considered in this study are technically feasible as well as economically viable.

  • PDF

Business Cycles and Impacts of Oil Shocks on the Korean Macroeconomy (경기변동에 따른 유가충격이 거시경제에 미치는 영향에 관한 연구)

  • Baek, Ingul;Kim, Taehwan
    • Environmental and Resource Economics Review
    • /
    • v.29 no.2
    • /
    • pp.171-194
    • /
    • 2020
  • We revisit the impact of oil shocks on the Korean economy and examine how this impact varies depending on a business cycle. First, we estimate the probability of a recession through a logistic probability distribution, and correct the probability to match business cycles announced by the Korea National Statistical Office. We set up a STVAR model to analyze the response of macroeconomic variables to oil shocks according to business cycles. We find that oil shocks during the recession have a negative effect on GDP in the mid- and long-term, but during the expansion, GDP does not show a statistically significant response to oil shocks. We presume that this finding is associated with the factors of both the increase in demand for consumption and the increase in current account during the economic boom. Also, we find that the impact of oil shocks on the price level was also observed differently in terms of the persistence of inflation by business cycle. These results highlight the importance of an application of a regime switching model, which has been widely used in energy economics in recent years.

Effect of Risk Factors on the Management of Working Capital in Hospital Management (병원경영의 위험요인이 운전자본 관리에 미치는 영향)

  • Ha, Au-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.187-193
    • /
    • 2020
  • This study analyzed how risk factors in management affect the management of working capital in general hospitals in Korea. The data used accounting information for three years (2016~2017 and 2018) of 271 general hospitals using the medical institution accounting information disclosure system. The independent variables were the working capital level and the cash conversion cycle, The dependent variables were operational risk and market risk, Control variables were selected as components of working capital(cash, accounts receivable, inventory assets, accounts payable). According to the study, the lower the operational risk, the higher the level of working capital hospitals in Korea. Working capital decisions were confirmed to be attributable to operating risks, cash, inventory assets and accounts payable. And the lower the market risk (Operating Margin), the higher the cash conversion cycle. Therefore, it is necessary to review appropriate management measures of operational risks, cash, inventory assets and accounts payable identified as operating capital determinants so that medical institutions can also have economic response capabilities in consideration of the specificity of their operations.

Establishment of the Chickpea Wilt Pathogen Fusarium oxysporum f. sp. ciceris in the Soil through Seed Transmission

  • Pande S.;Rao, J. Narayana;Sharma M.
    • The Plant Pathology Journal
    • /
    • v.23 no.1
    • /
    • pp.3-6
    • /
    • 2007
  • Chickpea wilt caused by Fusarium oxysporum f. sp. ciceris(FOC) is the most destructive disease in India. It is seed-borne as well as soil-borne pathogen. The role of seed-borne FOC in introducing and establishing wilt in FOC free soils is unknown. Using seeds of FOC infected chickpea cultivar K 850, we provided an evidence of establishing wilt disease in the FOC free soils within three crop cycles or seasons. In the first cycle, typical wilt symptoms were observed in 24 pots in 41 days after sowing. These 24 pots were used for second and third cycles without changing the soil. These 24 pots were sown with seeds collected from healthy plants of a susceptible cultivar JG 62, one seed per pot and development of wilt symptom was recorded. Wilt symptoms appeared in all the pots 26 days after sowing in second cycle and in 16 days after sowing in third cycle. On selective medium, all of the wilted plants yielded FOC in all the three cycles indicating that the mortality was due to wilt. FOC propagules on selective medium were 172, 1197, and 2280 $g^{-1}$ soil at the end of the first, second, and third cycles, respectively. These studies indicated that Fusarium wilt of chickpea is seed-borne and seeds harvested from wilted plants when mixed with healthy seeds can carry the wilt fungus to new areas and can establish the disease in the soil to economic threshold levels within three seasons.

Korean Nuclear Reactor Strategy for the Early 21st Century -A Techno-Economic and Constraints Comparison- (21세기 차세대 한국형 원자로 전략 -기술경제 제약요인 비교-)

  • Lee, Byong-Whi;Shin, Young-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.20-29
    • /
    • 1991
  • The system analysis for Korean nuclear power reactor option is made on the basis of reliability, cost minimization, finite uranium resource availability and nuclear engineering manpower supply constraints. The reference reactor scenarios are developed considering the future electricity demand, nuclear share, current nuclear power plant standardization program and manufacturing capacity. The levelized power generation cost, uranium requirement and nuclear engineering professionals demand are estimated for each reference reactor scenarios and nuclear fuel cycle options from the year 1990 up to the year 2030. Based on the outcomes of the analysis, uranium resource utilization, reliability and nuclear engineering manpower requirements are sensitive to the nuclear reactor strategy and associated fuel cycle whereas the system cost is not. APWR, CANDU longrightarrow FBR strategy is to be the best option for Korea. However, APWR, CANDU longrightarrow Passive Safe Reactor(PSR)longrightarrowFBR strategy should be also considered as a contingency for growing national concerns on nuclear safety and public acceptance deterioration in the future. FBR development and establishment of related fuel cycle should be started as soon as possible considering the uranium shortage anticipated between 2007 and 2032. It should be noted that the increasing use of nuclear energy to minimize the greenhouse effects in the early 21st century would accelerate the uranium resource depletion. The study also concludes that the current level of nuclear engineering professionals employment is not sufficient until 2010 for the establishment of nuclear infrastructure.

  • PDF

Developmental characteristics and life cycle of the lawn cutworm, Spodoptera depravata (Lepidoptera: Noctuidae)

  • Jeong, Su Yeon;Lee, Byeong Yeon;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.38 no.2
    • /
    • pp.38-50
    • /
    • 2019
  • We investigated the developmental characteristics and life cycle of the lawn cutworm, Spodoptera depravata (Lepidoptera: Noctuidae), which is one of the most important pests causing economic damage in grass production. For larval culture, we provided the zoysiagrass at $25^{\circ}C$ and $60{\pm}5%$ humidity. The durations of the developmental stages were as follows: $4.11{\pm}0.19$ days for eggs, $25.17{\pm}3.02$ for larvae, $8.80{\pm}0.28$ for pupae, and $7.57{\pm}0.95$ for adults. We grew the larvae to the 7th instar stage, unlike previous studies, in which it was assumed that the 6th instar was the final age. There was a significant positive correlation between the body length and head capsule width of each instar larvae. In terms of morphology, the eggs changed from light green immediately following oviposition to black as they developed, and the grass-fed larvae changed from light yellow immediately after hatching to green as development continued. We observed a pattern of black spots at regular intervals on the dorsal sides of the abdomens of the final instar larvae. Furthermore, we detected two notable designs on the dorsal side of the front of the head. The pupal colors changed from light brown and green immediately after pupation, to dark brown as the pupal cuticle hardened. The wingspans of the adults were similar in both sexes. However, the forewings of the males had obvious outer lines and eyespots with dark gray-brown backgrounds, whereas the corresponding features on the female forewings were less obvious. The oviposition preperiod was 2.11 days, the oviposition period was 4.2 days, the average fecundity per female was approximately 341 eggs, and the hatching rate was approximately 76.1%.

Development and application of Smart Water Cities global standards and certification schemes based on Key Performance Indicators

  • Lea Dasallas;Jung Hwan Lee;Su Hyung Jang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.183-183
    • /
    • 2023
  • Smart water cities (SWC) are urban municipalities that utilizes modern innovations in managing and preserving the urban water cycle in the city; with the purpose of securing sustainability and improving the quality of life of the urban population. Understanding the different urban water characteristics and management strategies of cities situate a baseline in the development of evaluation scheme in determining whether the city is smart and sustainable. This research herein aims to develop measurements and evaluation for SWC Key Performance Indicators (KPIs), and set up a unified global standard and certification scheme. The assessment for SWC is performed in technical, as well as governance and prospective aspects. KPI measurements under Technical Pillar assess the cities' use of technologies in providing sufficient water supply, monitoring water quality, strengthening disaster resilience, minimizing hazard vulnerability, and maintaining and protecting the urban water ecosystem. Governance and Prospective Pillar on the other hand, evaluates the social, economic and administrative systems set in place to manage the water resources, delivering water services to different levels of society. The performance assessment is composed of a variety of procedures performed in a quantitative and qualitative manner, such as computations through established equations, interviews with authorities in charge, field survey inspections, etc. The developed SWC KPI measurements are used to evaluate the urban water management practices for Busan Eco Delta city, a Semulmeori waterfront area in Gangseo district, Busan. The evaluation and scoring process was presented and established, serving as the basis for the application of the smart water city certification all over the world. The established guideline will be used to analyze future cities, providing integrated and comprehensive information on the status of their urban water cycle, gathering new techniques and proposing solutions for smarter measures.

  • PDF

A Study on the Reduction of $CO_2$ Emission by the Application of Clean Technology in the Cement Industry (시멘트산업공정에서의 $CO_2$배출량 저감을 위한 청정기술 적용에 관한 연구)

  • Park, Young-G.;Kim, Jeong-In
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2010
  • The feasibility of clean technology to minimize the $CO_2$ emission by recycling and reuse the waste materials and energy have been studied for the cement industry. A life cycle assessment (LCA) was performed for an alternative raw material-supply method to use the molted slag as the major raw material in the cement clinker manufacturing. Using this new method, a 60% of $CO_2$ could be reduced that comes out during the decarboxylation from the cement rotary kiln. The energy-efficiency improvement and the alternative energy methods that had been determined in our previous study through the environmental assessment of cement industry were applied to the study for the reduction of $CO_2$ emission. The natural gas, one of the fossil fuels, was also used as the first choice to get the result at the earliest time by the most economic and the most efficient green technology and to switch into the carbon neutral energy consumption pattern.

Cost Comparison of PWR and PHWR Nuclear Power Plants in Korea

  • Kim, Chang-Hyo;Chung, Chang-Hyun;So, Dong-Sub
    • Nuclear Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.263-274
    • /
    • 1979
  • A statistical approach is used to investigate the relative economic advantages of pressurized water reactor (PWR) and pressurized heavy water reactor (PHWR-CANDU) nuclear power plants for hypothetical 900Mwe systems with the throwaway fuel cycle to be built in the Republic of Korea. Power cost is decomposed into the cost components related to the plant capital, operation and maintenance, working capital requirements and fuel cycle operation. The calculation of construction cost is performed with the modified version of computer code ORCOST, and the modified POWERCO-50 is used to evaluate the cost components. Most of economic parameters are treated as statistical variables, each being given with a certain range. Through a random sampling procedures. the probability histograms on unit plant construction costs and power generating costs are obtained. The power cost probability histograms of the PWR and the PHWR plants overlap considerably, and the power costs of two systems appear to be almost same with the PHWR power cost being 0.4mil1/kwh lower compared with 39.4 mills/kwh for the PWR plant (July 1986 US-dollars). When a construction period of PHWR plant is longer by one year than that of PWR plant, there is no difference in the unit power cost of two plants. This comparison leads to no definite conclusion on the cost advantage of the PWR plant versus the PHWR plant. We conclude that the selection issue of nuclear power plants in Korea still remains an open question and that future effort to solve this question should be made toward economic quantification of those factors such as technology transfer and localization.

  • PDF