• Title/Summary/Keyword: ecological responses

Search Result 266, Processing Time 0.024 seconds

Effect of Experimental Warming on Physiological and Growth Responses of Larix kaempferi Seedlings (실외 온난화 처리에 따른 낙엽송 묘목의 생리 및 생장 반응)

  • An, Jiae;Chang, Hanna;Park, Min Ji;Han, Seung Hyun;Hwang, Jaehong;Cho, Min Seok;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.77-84
    • /
    • 2016
  • Seedling stage is particularly important for tree survival and is easily influenced by warming. Therefore, air temperature being increased due to climate change may affect physiological traits and growth of seedlings. This study was conducted to investigate the physiological and growth responses of Larix kaempferi seedlings to open-field experimental warming. 1-year-old and 2-year-old L. kaempferi seedlings were warmed with infrared lamps since April 2015 and April 2014, respectively. The seedlings in the warmed plots were warmed to maintain the air temperature to be $3^{\circ}C$ higher than that of the control plots. Physiological responses (stomatal conductance, transpiration rate, net photosynthetic rate and total chlorophyll content) and growth responses (root collar diameter (RCD), height and biomass) to experimental warming were measured. Physiological and growth responses varied with the seedling ages. For 2-year-old L. kaempferi seedlings, stomatal conductance, transpiration rate and net photosynthetic rate decreased following the warming treatment, whereas there were no changes for 1-year-old L. kaempferi seedlings. Meanwhile, total chlorophyll content was higher in warmed plots regardless of the seedling ages. Net photosynthetic rate linked with stomatal conductance also decreased due to the drought stress and decrease of photosynthetic efficiency. In response to warming, RCD, height and biomass did not show significant differences between the treatments. It seems that the growth responses were not affected as much as physiological responses were, since the physiological responses were not consistent, nor the warming treatment period was enough to have significant results. In addition, multifactorial experiments considering the impact of decreased soil moisture resulting from elevated temperatures is needed to explicate the impacts of a wide range of possible climate change scenarios.

Variations in Ecological Niche of Quercus variabilis and Quercus acutissima Leaf Morphological Characters in Response to Moisture and Nutrient Gradient Treatments under Climate Change Conditions (기후변화 조건에서 수분구배 및 영양소 구배에 따른 굴참나무와 상수리나무 잎 형태적 특성의 생태지위 변화)

  • Park, Yeo-Bin;Kim, Eui-Joo;Park, Jae-Hoon;Kim, Yoon-Seo;Park, Ji-Won;Lee, Jung-Min;You, Young-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.2
    • /
    • pp.43-53
    • /
    • 2024
  • This study attempted to elucidate the ecological niches and influencing environmental factors of Quercus variabilis and Quercus acutissima, which are representative deciduous broad-leaved trees in Korean forests, taxonomically close and genetically similar, under climate change conditions. Under climate change conditions induced by increased CO2 and temperature, soil moisture and nutrient environments were manipulated in four gradients. At the end of the growing, plants were harvested to measure growth responses, calculate ecological niches, and compare them with those of the control. Eperimental plants were grown for 180 days in a glass greenhouse designed with four gradients each for soil moisture and nutrient environments under climate change conditions induced by increased CO2 and temperature. After harvesting, growth responses of leaf traits were measured, ecological niches were calculated, and these were compared with those of the control groups. Furthermore, the responses of the two species' populations were interpreted using principal component analysis(PCA) based on leaf trait measurements. As a result, under climate change conditions, the ecological niche breadth for moisture environment was broader for Quercus variabilis than Quercus acutissima, whereas for the nutrient environment, Quercus acutissima exhibited a broader niche breadth than Quercus variabilis. And the rate of change in ecological niche breadth due to climate change decreased for Quercus variabilis in both moisture and nutrient environments, while for Quercus acutissima, it increased in the moisture environment but decreased in the nutrient environment. Additionally, in terms of group responses, both Quercus variabilis and Quercus acutissima expanded their ecological niches under climate change conditions in both soil moisture and nutrient conditions, with Quercus acutissima exhibiting a broader niche than Quercus variabilis under nutrient conditions. These results indicate that the changes in leaf morphological characteristics and the responses of individuals reflecting them vary not only under climate change conditions but also depending on environmental factors.

Ecological responses of natural and planted forests to thinning in southeastern Korea: a chronosequence study

  • Cho, Yong-Chan;Pee, Jung-Hun;Kim, Gyeong-Soon;Koo, Bon-Yoel;Cho, Hyun-Je;Lee, Chang-Seok
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.347-355
    • /
    • 2011
  • Effects of forest thinning on community level properties have not been understood yet in Korea. We investigated regeneration patterns and trajectories after a disturbance by applying a chronosequence approach. Light availability, litter and woody debris cover, and species composition were determined for twenty 50 m line-transect samples representing a disturbance duration gradient (within 11 years). Environmental factors such as light availability and coverage of woody debris and litter changed abruptly after thinning and then returned to the pre-disturbance state. Although species richness was gained at shrub and ground layer in a limited way in both forests, cover of various functional types revealed diversity in their responses. Notably, Alnus firma stands exhibited a larger increment of cover in woody plants. Ordination analysis revealed different regeneration trajectories between natural and planted stands. Based on ordination analysis, rehabilitated stands showed movement to alternative states compared with natural ones, reflecting lower resilience to perturbation (i.e., lower stability). Our results suggest that community resilience to artificial thinning depends on properties of the dominant species. But to get more explanatory ecological information, longer-term static observations are required.

Sensitivity Analysis of High and Low Flow Metrics to Climate Variations

  • Kim, Jong-Suk;Jang, Ho-won;Hong, Hyun-Pyo;Lee, Joo-Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.355-355
    • /
    • 2018
  • Natural hydrology systems, including high flow and low flow events, are important for aquatic ecosystem health and are essential for controlling the structure and function of ecological processes in river ecosystems. Ecosystem responses to flow changes have been studied in a variety of ways, but little attention has been given to how episodic typhoons and atmospheric circulation patterns can change these hydrologic regime-ecological response relationships. In this diagnostic study, we use an empirical approach to investigate the salient features of interactions between atmospheric circulation, climate, and runoff in the five major Korean river basins.

  • PDF

Ecological Responses of Plants to Climate Change: Research Trends and Its Applicability in Korea (기후변화에 대한 식물의 생태적 반응: 연구동향과 한국에서의 적용가능성)

  • Kang, Hyesoon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.319-331
    • /
    • 2013
  • Recent climate change, which is mostly ascribed to anthropogenic activities, is believed to be a major factor leading to biodiversity decreases and ecosystem service deteriorations. I have reviewed recent studies on climate change effects for many ecological processes involved with plants, in order to improve our understanding of the nature of ecological complexity. Plants in general have better growth and productivity under high levels of $CO_2$, although the long term effects of such $CO_2$ fertilizers are still controversial. Over the last 30 years, the Earth has been greening, particularly at higher latitudes of the Northern Hemisphere, perhaps due to a relaxation of climatic constraints. Human appropriation of net primary productivity (NPP), which corresponds up to 1/3 of global NPP, is ultimately responsible for climate change and biodiversity decreases. Climate change causes phenological variations in plants, especially in regards to spring flowering and fall leaf coloring. Many plants migrate polewards and towards higher altitudes to seek more appropriate climates. On the other hand, tree mortality and population declines have recently been reported in many continents. Landscape disturbance not only hinders the plant migration, but also makes it difficult to predict the plants' potential habitats. Plant and animal population declines, as well as local extinctions, are largely due to the disruption of species interactions through temporal mismatching. Temperature and $CO_2$ increase rates in Korea are higher than global means. The degree of landscape disturbances is also relatively high. Furthermore, long-term data on individual species responses and species interactions are lacking or quite limited in Korea. This review emphasizes the complex nature of species responses to climate change at both global and local scales. In order to keep pace with the direction and speed of climate change, it is urgently necessary to observe and analyze the patterns of phenology, migration, and trophic interactions of plants and animals in Korea's landscape.

Research Trends of Forest Liming and the Effects of Liming on Forest Ecosystems (산림 대상 석회 시용의 연구 경향과 산림생태계에 미치는 영향)

  • Kim, Jusub;Chang, Hanna;Roh, Yujin;Han, Seung Hyun;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.50-61
    • /
    • 2018
  • The current study aimed to review the research trends on forest liming by age, country, and research topics, and seeks to summarize the effects of forest liming on soil, vegetation and water system in forest ecosystems. The recent goals of forest liming have been changed in response to changes in the acid deposition, and related studies have been mainly carried out in Europe and North America, where there is noted a massive forest decline, which was subsequently caused by acid rain. Most forest liming studies are noted to have focused on soil responses, however, the number of studies on the responses of vegetation and water system according to a literature review on the subject were relatively small. Meanwhile, forest liming influenced whole forest ecosystems through interaction between the soil, vegetation and water system as associated with the relevant regions. The changes in soil pH, base saturation, and cation exchange capacity by forest liming were noted as different depending on the soil layer and elapsed time after liming. The responses of vegetation to forest liming were shown in above- and below-ground plant growth and plant nutrient concentration, and also were noted to have varied depending on the available regional plant species and noted specific soil conditions. The chemical properties of the water system were changed similarly to those in the soil, leading to notable changes as seen in the planktons and available fish species in the region. Finally, these results could be used to plan further studies on forest liming, which would significantly benefit regional studies to promote the preservation of the species noted for protection in the region.

Species-specific Growth Responses of Betula costata, Fraxinus rhynchophylla, and Quercus variabilis Seedlings to Open-field Artificial Warming (거제수나무, 물푸레나무, 굴참나무 묘목의 실외 인위적 온난화에 대한 수종 특이적 생장 반응)

  • Han, Saerom;An, Jiae;Yoon, Tae Kyung;Yun, Soon Jin;Hwang, Jaehong;Cho, Min Seok;Son, Yowhan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • Evaluation of tree responses to temperature elevation is critical for a development of forest management techniques coping with climate change. We conducted a study on the growth responses of Betula costata, Fraxinus rhynchophylla, and Quercus variabilis seedlings to open-field artificial warming. Artificial warming set-up using infra-red heater was built in 2012 and the temperature in warmed plots was regulated to be consistently $3^{\circ}C$ higher than that of control plots. The seeds of three species were sown, and the responses of growth, biomass allocation, and net photosynthetic rate of newly-germinated seedlings on the open-field artificial warming were determined. As a result, the growth responses of the seedlings differed with the species. B. costata showed decreases in the height to diameter ratio (H/D ratio), biomass, root weight to shoot weight ratio, and net photosynthetic rate. However, root collar diameter (RCD), height, biomass, and net photosynthetic rate of Q. variabilis were increased, while the response of F. rhynchophylla was rather obscure. There was no significant difference between warmed and control plots in seedling growth for 3 species in July, whereas, RCD, height, and H/D ratio of Q. variabilis were increased and H/D ratio of B. costata was decreased in November under warming. Species-specific growth responses to warming were similar to the species-specific responses of net photosynthetic rate and biomass allocation; therefore, net photosynthetic rate and biomass allocation might attribute to growth responses to warming. Besides, a relatively obvious response in autumn compared to summer might be affected by the phenological change following artificial warming. Species-specific responses of three deciduous species to warming in this study could be applied to the development of adaptive forest management policies to climate change.

The Effect of Cognitive Dieting Behavior on Consumers' Food Perceptions, Emotional Responses, and Value Conflict in Restaurants

  • Kim, Min Jung;Kim, Dong-Jin
    • Culinary science and hospitality research
    • /
    • v.23 no.6
    • /
    • pp.153-160
    • /
    • 2017
  • This study was intended to examine the influence of health consciousness on health/taste inferences, affect-based inferences, and perceived conflict between taste and health in food decision making. Seven hundred and fifty-four participants completed the survey. Structural equation modeling with a maximum likelihood method was used to test the relationships among constructs, following the two-step approach. The results of this study showed that more health-conscious consumers have a higher perceived healthfulness of food items but lower anticipated taste. In addition, this study also found consumers' cognitive responses influenced affective responses. Results suggested that when restaurants promote menu items as both healthy and tasty, consumers' positive hedonic emotions (such as pleasure) increased and negative self-conscious emotions (such as guilt) decreased, and consumers' efforts to balance health and taste were supported. At last, the implications both for academia and marketing were also established and discussed.