• Title/Summary/Keyword: ecological geographic map

Search Result 38, Processing Time 0.025 seconds

CHARACTERISTICS AND PRACTICAL USE OF THE NATIONAL ENVIRONMENTAL ASSESSMENT MAP IN KOREA

  • Jeon, Seong-Woo;Lee, Chong-Soo;Song, Won-Kyong;Lee, Moung-Jin;Lee, Woo-Kyun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.876-879
    • /
    • 2006
  • This study was performed for developing the National Environmental Assessment Map (NEAM) in Korea and presenting the application method of NEAM. This NEAM adopted the least indicator method and uses a Geographic Information System (GIS). This map is made through evaluation of 67 items, including greenbelt status and biodiversity. As a result, the construction of NEAM was defined as a process of identifying land use to scientifically assess the physical and environmental value of land and classify conservation value into several grades for the sustainable management of environmental resources. After applying NEAM criteria of five degrees to the whole of Korea, Grade I, showing the highest conservation value, accounted for 45.6% by land area of NEAM. Grades II, III, IV, and Ⅴlikewise accounted for, respectively, 23.6%, 17.9%, 6.3%, and the lowest conservation value of 6.6%. This map can be widely used in, for example, urban and regional planning, development planning, and environment impact assessment.

  • PDF

3D Visualization of Forest Information Using LiDAR Data and Forest Type Map (LiDAR 데이터와 임상도를 이용한 산림정보의 3차원 시각화)

  • Bang, Eun-Gil;Yoon, Dong-Hyun;Koh, June-Hwan
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.53-63
    • /
    • 2014
  • As recent interest in ecological resources increases, an effort in three-dimensional visualization of the ecological resources has increased for the restoration and preservation of the natural environment as well as the evaluation of the landscape. However, in the case of forest resources, information extraction has been active, but the effort in trying to apply that information into an effective visualization has not happened. In other words, the effort for effective visualization is lacking when it comes to the visualization of forest resources, and numerous cases are ether non-realistic or the simulation required for analysis is inappropriate. Therefore, this paper extracts information through the use of airborne LiDAR data, aerial photograph, and forest type maps to create a vegetation layer, and then uses Flora3D forest modeling tools and ArcGlobe to accurately visualize the vegetation layer into the three dimension. An effective application for restoration and preservation of ecological resources as well as analysis on the urban landscape can be considered as a result of intuitively and realistically enabling the user's awareness of forest information within the Geographic Information System.

Strategies to Build Ecological Networks in Consideration of Life-Zones in Cheongju City Using GIS (GIS를 활용한 청주시 생활권 생태네트워크 구축 방안)

  • Ban, Yong Un;Jeong, Ji-Hyeong;Woo, Hye-Mi;Baek, Jong In
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2009
  • This study has intended to build ecological networks in consideration of life-zones inside Cheongju city through biotope grade, GIS network analysis etc. This study consisted of following three steps. First, we selected core districts and core spot districts using land use patten and biotope grade. The core district included the first grade of biotope and forest land. The core district consisted of two sectors : east axis core, Uam mountain; west axis core, Bumo mountain. The core spot district included the first grade of biotope. The core spot districts consisted of two sectors : north axis base core, Myongshim park; south axis base core, Guryong park. Second, the base district included the second grade of biotope and park and school. We used buffering analysis within 500m of the base district and selected the new base district. Third, we connected core districts and base core districts using least cost analysis of GIS. Thus we built comprehensive ecological networks in consideration of life-zones through GIS.

Water Quality Management System for a Farm Village Stream -watershed monitoring and the system design- (농촌마을 하천의 수질관리 시스템 - 시험유역 조사 및 시스템 설계 -)

  • 정하우;최진용
    • Journal of Korean Society of Rural Planning
    • /
    • v.2 no.2
    • /
    • pp.109-117
    • /
    • 1996
  • The purpose of this study Is to develop water quality management system fort a farm village stream. The framework design of the system and the ecological monitoring of a test watershed were carried out, The system consists of GIS(Geographic Information System ), database, pollution source management, water quality and hydrologic analysis. Suri watershed located on Idong, Yongin city, Kyunggi Province, was selected as the test watershed for the application of the system. The fifteen's monitoring stations were chooses at up- and down-stream of the watershed. The results of an aquatic ecological monitoring were analyzed by the GPI(Group Pollution Index) method. The GPI revealed that water quality was varied within the stream. GPI and DO map for the watershed stream were developed, These maps facilitated to analyze the spatial distribution of the water quality.

  • PDF

Creating and Using BIM waste energy map Study on Energy Management

  • Kim, Hye-Mi;Hong, Won-Hwa
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.09a
    • /
    • pp.291-291
    • /
    • 2010
  • Emerging global economic growth and increasing demand for energy supply and demand imbalance and the excessive use of fossil fuels existing the rapidly increasing greenhouse gas emissions and resource depletion of global energy crisis is deepening. Accordingly, improvement of living conditions around and through the natural ecological preservation and the need for a comfortable life for the meeting the importance of energy management and consumption are emerging. Many in the field of architecture for energy-saving measures and conducts research and analysis from the early stages to verify the energy performance of BIM (Building Information Model) technology development and commercialization through the building's energy performance to an objective technology forecasts Analysis of the existing building energy performance in waste management also possible that "BIM-based green building process, the possibility of" suggested. In this study, BIM through the analysis of information using the structures for the management of waste, energy and physical data collected by Mapping it can effectively plan resources for recycling were analyzed.

  • PDF

The Relationship Analysis between the Epicenter and Lineaments in the Odaesan Area using Satellite Images and Shaded Relief Maps (위성영상과 음영기복도를 이용한 오대산 지역 진앙의 위치와 선구조선의 관계 분석)

  • CHA, Sung-Eun;CHI, Kwang-Hoon;JO, Hyun-Woo;KIM, Eun-Ji;LEE, Woo-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.61-74
    • /
    • 2016
  • The purpose of this paper is to analyze the relationship between the location of the epicenter of a medium-sized earthquake(magnitude 4.8) that occurred on January 20, 2007 in the Odaesan area with lineament features using a shaded relief map(1/25,000 scale) and satellite images from LANDSAT-8 and KOMPSAT-2. Previous studies have analyzed lineament features in tectonic settings primarily by examining two-dimensional satellite images and shaded relief maps. These methods, however, limit the application of the visual interpretation of relief features long considered as the major component of lineament extraction. To overcome some existing limitations of two-dimensional images, this study examined three-dimensional images, produced from a Digital Elevation Model and drainage network map, for lineament extraction. This approach reduces mapping errors introduced by visual interpretation. In addition, spline interpolation was conducted to produce density maps of lineament frequency, intersection, and length required to estimate the density of lineament at the epicenter of the earthquake. An algorithm was developed to compute the Value of the Relative Density(VRD) representing the relative density of lineament from the map. The VRD is the lineament density of each map grid divided by the maximum density value from the map. As such, it is a quantified value that indicates the concentration level of the lineament density across the area impacted by the earthquake. Using this algorithm, the VRD calculated at the earthquake epicenter using the lineament's frequency, intersection, and length density maps ranged from approximately 0.60(min) to 0.90(max). However, because there were differences in mapped images such as those for solar altitude and azimuth, the mean of VRD was used rather than those categorized by the images. The results show that the average frequency of VRD was approximately 0.85, which was 21% higher than the intersection and length of VRD, demonstrating the close relationship that exists between lineament and the epicenter. Therefore, it is concluded that the density map analysis described in this study, based on lineament extraction, is valid and can be used as a primary data analysis tool for earthquake research in the future.

How to utilize vegetation survey using drone image and image analysis software

  • Han, Yong-Gu;Jung, Se-Hoon;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.114-119
    • /
    • 2017
  • This study tried to analyze error range and resolution of drone images using a rotary wing by comparing them with field measurement results and to analyze stands patterns in actual vegetation map preparation by comparing drone images with aerial images provided by National Geographic Information Institute of Korea. A total of 11 ground control points (GCPs) were selected in the area, and coordinates of the points were identified. In the analysis of aerial images taken by a drone, error per pixel was analyzed to be 0.284 cm. Also, digital elevation model (DEM), digital surface model (DSM), and orthomosaic image were abstracted. When drone images were comparatively analyzed with coordinates of ground control points (GCPs), root mean square error (RMSE) was analyzed as 2.36, 1.37, and 5.15 m in the direction of X, Y, and Z. Because of this error, there were some differences in locations between images edited after field measurement and images edited without field measurement. Also, drone images taken in the stream and the forest and 51 and 25 cm resolution aerial images provided by the National Geographic Information Institute of Korea were compared to identify stands patterns. To have a standard to classify polygons according to each aerial image, image analysis software (eCognition) was used. As a result, it was analyzed that drone images made more precise polygons than 51 and 25 cm resolution images provided by the National Geographic Information Institute of Korea. Therefore, if we utilize drones appropriately according to characteristics of subject, we can have advantages in vegetation change survey and general monitoring survey as it can acquire detailed information and can take images continuously.

The Design and Implementation of Natural Environmental/Ecological Information System using GIS and RS Data (GIS 및 RS 데이터를 이용한 자연환경/생태계 정보시스템 설계 및 구현)

  • Hwang, Jae Hong;Kim, Sang Ho;Ryu, Keun Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.3
    • /
    • pp.1-12
    • /
    • 2001
  • This thesis represents the integrated 3D DEM using both the process of satellite image and the real value of topographic maps. This DEM is draped on satellite image processed to improve representations of the real world. The 3D visualization and 3D animation with satellite imagery data enables to depict more vivid and realistic world. The paper also describes and implements the natural environmental/ecological information system that consists of 7 modules to manage environmental data systematically through an enhanced user interface. We make use of topographic map, satellite imagery data and several thematic maps. Each module has a user interface enabling to assist particular needs of decision-making for ecological/environmental assessments associated with spatial analysis of ecosystem and classification of the environmental status quo and other purposes.

  • PDF

Up-scaling Vegetation Carbon Storage Distribution Map of Pinus densiflora Stands from Plot to Landscape Level using GIS/RS (GIS RS 식생탄소저장능력의 공간분포 특성규명)

  • Kim, T.M.;Song, C.C.;Lee, W.K.;Son, Y.;Bae, S.W.;Kim, C.S.
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2007.10a
    • /
    • pp.221-225
    • /
    • 2007
  • 산림은 탄소저장능력이 있어 대표적인 온실가스인 이산화탄소를 저감시킨다. 따라서 산림의 탄소저장능력 특성을 규명하고 그것을 산림경영에 반영함으로써 온실가스 저감이라는 국제적 노력에 동참하는 수단으로 활용할 수 있다. 일반적으로 임분에서의 탄소저장능력(Carbon Storage, CS)은 식생탄소저장능력(Vegetation Carbon Storage, VCS)과 토양탄소저장능력(Soil Carbon Storage, SCS)의 합으로 볼 수 있다. 본 연구에서는 우리나라 대표적인 자생수종인 소나무림 VCS의 공간분포를 지엽적 범위(spot level)에서 광역적 범위(regional level)로 확대하여 그 특성을 규명하는 방법을 제시하고자 한다. 지엽적 범위의 조사 및 연구에서 VCS는 임목의 흉고직경(Diameter at Breast Height)과 밀접한 관계가 있는 것으로 확인되었다. 이러한 관계와 Quickbird 고해상도 위성영상에서 추출한 소나무림 공간분포도를 이용해 경관범위(landscape level)에서 소나무림 탄소저장능력의 공간분포를 추정할 수 있었으며,그 결과를GIS 및 RS를 통해 광역적 범위로 확대하였다.

  • PDF

HAZARD ASSESSMENT OF CURRENT STATE OF VEGETATION DEGRADATION USING GIS, A CASE STUDY: SADRA REGION, IRAN

  • Masoudi, Masoud;Amiri, E.
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • The entire land of Southern Iran faces problems arising out of various types of land degradation of which vegetation degradation forms one of the major types. The present work introduces a model developed for assessing the current status of hazard of vegetation degradation using Geographic Information System (GIS). This kind of assessment differs from those assessments based on vulnerability or potential hazard assessments. The Sadra watershed which covers the upper reaches of Marharlu basin, Fars Province, has been chosen for a hazard assessment of this type of degradation. The different kinds of data for indicators of current status of vegetation degradation were gathered from collecting of field data and also records of the governmental offices of Iran. Taking into consideration three indicators of current status of vegetation degradation the model identifies areas with different hazard classes. By fixing the thresholds of severity classes of the three indicators including per cent of vegetation cover, biomass production and ratio of actual biomass to potential biomass production, a hazard map for each indicator was first prepared in GIS. The final hazard map of current status of vegetation degradation was prepared by intersecting three hazards in the GIS. Results show areas under severe hazard class have been found to be widespread (89 %) while areas under moderate and very severe hazard classes have been found less extensive in the Sadra watershed. The preparation of hazard maps based on the GIS analysis of these indicators will be helpful for prioritizing the areas to initiate remedial measures.