• Title/Summary/Keyword: eco-renewable

Search Result 169, Processing Time 0.027 seconds

Challenges for the realization of carbon neutrality and air pollution improvement in major Northeast Asian countries: The importance of transitioning to eco-friendly EV industry and the necessity of developing lightweight materials

  • Sung-Hyung Lee;Hitoshi Yashiro;Song-Zhu Kure-Chu
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.12-39
    • /
    • 2023
  • Diseases caused by air pollution and abnormal climate are occurring worldwide due to global warming. Accordingly, the international community has established a strategy to respond to climate change, and major countries have shifted their economic policies to eco-friendly industries. In this study, we investigate the current status of the renewable energy industry and that of responses to carbon neutrality and PM2.5 (air pollution) in the three major Northeast Asian countries of Japan, Korea, and China, covering changes in the corporate perceptions of Environment, Social, Governance and RE100. In more detail, the three major Northeast Asian countries, referred to as the climate villains in the international community, explain the importance of successful entry into the electric vehicles (EV) industry for a rapid transition to an eco-friendly industry. Moreover, we study the application of lightweight materials for vehicles to improve mileage in the EV industry and technical problems to be solved in the future.

Effects of hospital environment using health belief model in environmental management on preventive behaviors through responsiveness and health value (환경경영에서 건강신념모델을 이용한 병원환경이 대응성과 건강가치성을 통해 예방행동에 미치는 영향)

  • Jang, Googhyun;Hwang, Changyu;Song, Youngwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.231-257
    • /
    • 2016
  • Several efforts to replace the use of existing fossil energy resources have already been made around the world. As a result, a new industry of renewable energy has been created, and efficient energy distribution and storage has been promoted intensively. Among the newly explored renewable energy sources, the most widely used one is solar energy generation, which has a high market potential. An energy storage system (ESS) is a system as required. In this paper, the design and implementation of an ESS for the efficient use of power in stand-alone street lights is presented. In current ESS applied to stand-alone street lights, either 12V~24V DC (from solar power) or 110V~220V AC (from commercial power) is used to recharge power in systems with lithium batteries. In this study, an ESS that can support both solar power and commercial power was designed and implemented; it can also perform emergency recharge of portable devices from solar powered street lights. This system can maximize the scalability of ESSes using lithium batteries with efficient energy conversion, with the advantage of being an eco-friendly technology. In a ripple effect, it can also be applied to smart grids, electric vehicles, and new, renewable storage markets where energy storage technology is required.

Multilevel Inverter Development to Utilize Renewable Energy in Urban Railway Station (도시철도 역사 신재생에너지 활용을 위한 멀티레벨 인버터 개발)

  • Shin, Seungkwon;Kim, Hyungchul;Jung, Hosung;Park, Jong Young;Hyun, Byungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.324-330
    • /
    • 2015
  • Energy Saving Methods in existing railway vehicle are considered by active approach such as regenerative energy storage and utilization, eco driving, etc. On the other hands, energy saving measures in railway station are operated by passive method such as reduction of operating time in ventilation system, cooing system and power equipment. To reduce energy and for independence in railway system, it requires an active energy saving measures. It needs to its own power source besides the power source of electric supply company such as renewable energy and regenerative energy and take the advantage of power storage system and stored power are used in optimum time. This paper deal with 3-level NPC inverter and T-type NPC inverter that used in various multi-level topology applicable to the railway system.

A Study on Design of Home Energy Management System to Induce Price Responsive Demand Response to Real Time Pricing of Smart Grid (스마트그리드 실시간요금과 연동되는 수요반응을 유도하기 위한 HEMS 설계에 관한 연구)

  • Kang, Dong-Joo;Park, Sun-Joo;Choi, Soo-Jung;Han, Seong-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.39-49
    • /
    • 2011
  • Smart Grid has two main objectives on both supply and demand aspects which are to distribute the renewable energy sources on supply side and to develop realtime price responses on demand side. Renewable energy does not consume fossil fuels, therefore it improves the eco-friendliness and saves the cost of power system operation at the same time. Demand response increases the flexibility of the power system by mitigating the fluctuation from renewable energies, and reduces the capacity investment cost by shedding the peak load to off-peak periods. Currently Smart Grid technologies mainly focus on energy monitoring and display services but it has been proved that enabling technologies can induce the higher demand responses through many pilot projects in USA. On this context, this paper provides a price responsive algorithm for HEMS (home energy management system) on the real time pricing environment. This paper identifies the demand response as a core function of HEMS and classifies the demand into 3 categories of fixed, transferable, and realtime responsive loads which are coordinated and operated for the utility maximization or cost minimization with the optimal usage combination of three kinds of demand.

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.

Performance Evaluation and Technical Development of Eco-environmental Photovoltaic Leisure Ship with Sail-controlling Device With Respect to Solar-Hybrid Generating System (풍력 Sail 돛 제어장치를 이용한 친환경 태양광 레져보트의 하이브리드 발전시스템 관련 성능평가에 대한 연구)

  • Oh, Kyoung Gun;Moon, Byung Young;Lee, Ki Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.57-67
    • /
    • 2016
  • As a new technical approach, an attempt was made to realize a photovoltaic system for an eco-environmental leisure ship by simultaneously actuating nine photovoltaic solar panels in association with the application of a sail-controlling system using wind energy. In this approach, the photovoltaic system consisted of a solar module, an inverter, a battery, and the relevant components, while the sail-controlling device was equipped with sail up/down and mast turning systems. The previously mentioned eco-environmental leisure ship utilizes a photovoltaic hybrid system that uses solar and wind energy as renewable energy sources. Furthermore, this research included a performance evaluation of the manufactured prototype, the acquisition of the purposed quantity values, and development of the purposed items. The significant items, including the sail up/down speed (seconds) and mast turning angle (degrees) were evaluated for a performance test. A wind direction sensitivity of 90% and maximum instant charging power of 900 W were also obtained in the process of the performance evaluation. In addition, the maximum sail time was also evaluated in order to acquire the optimum value. The performance evaluation showed that the prototype with a photovoltaic hybrid system was suitable for sailing an eco-environmental leisure ship using solar and wind energy.

The Investigation of Problems for Next Generation Energy System during Existing Urban Plan Stage (기존 도시계획 단계에서 차세대에너지시스템 적용시 문제점 검토)

  • Park, Jin-Young;Kim, Sam-Uel;Park, Yool;Lee, Sang-Jin;Lee, Jurng-Jae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.190-195
    • /
    • 2009
  • Since the industrial revolution, the global environmental problems such as greenhouse gas accumulation and the average temperature increase have caused people's attention. 'Low Carbon, Green Growth' was presented to cope with these global concerns, as one of main policies of 2008 in Korea. The paradigm of a green urban development is started to concern the whole city's energy problems owing to realize 'Low Carbon, Green Growth' in the urban side. The government established a nation's basic energy plan for 20 years, and some local cities made efforts to develop new renewable energy such as the solar, wind and water energy which are suitable to each city's character. As a part of these efforts, the concept of U-Eco city is newly appeared to reflect upon ubiquitous technique, urban ecology and the next generation energy system. However, urban plan is difficult to adopt this next generation energy system with existing laws, regulations and technical systems. The new executive and systematic system is needed to realize the U-Eco city U-Eco for the management of an efficient city. In this study, the authors investigate the concept of the next generation energy system and U-Eco city to realize the energy-efficient city plan and analyze problems to occur during the application of them in an existing city plan. Then, the authors show the remedies to deal with occurred problems.

  • PDF

Study of a Photovoltaic System as an Emergency Power Supply for Offshore Plant Facilities (해양플랜트 설비의 비상전원공급을 위한 태양광 발전시스템 연구)

  • Choi, Gun Hwan;Lee, Byung Ho;Jung, Rho-Taek;Shin, Kyubo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.279-286
    • /
    • 2018
  • The use of eco-friendly energy in the offshore plant system is expanding because conventional generators are operated by fossil fuel or natural gas. Eco-friendly energy, which replaces existing power generation methods, should be capable of generating the power for lighting protection equipment, airborne fault indication, parameter measurement, and others. Most of the eco-friendly energy used in offshore plant facilities is solar and wind power. In the case of using photovoltaic power, because the structure must be constructed based as flat solar panels, it can be damaged easily by the wind. Therefore, there is a need for a new generation system composed of a spherical structure that does not require a separate structure and is less influenced by the wind. Considering these characteristics, in this study we designed, fabricated, and tested a unit that could provide the most efficient spherical photovoltaic power generation considering wind direction and wind pressure. Our test results indicated that the proposed system reduced costs because it did not require any separate structure, used eco-friendly energy, reduced carbon dioxide emissions, and expanded the proportion of eco-friendly energy use by offshore plant facilities.

Development Strategy of the Renewable Energy Industry through Improvement of Renewable Portfolio Standard : Focused on Photovoltaic and Wind (의무할당제도 개선을 통한 신재생에너지 산업의 발전 전략 : 태양광, 풍력에너지 중심)

  • Kim, Jongwoan;Park, Sangchul
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.110-123
    • /
    • 2016
  • Since increase in energy consumption and environmental issues started to grab global attention, various countries have had their own supporting policy to promote supply of renewable energy which is a stable and eco-friendly energy source. This study analyses Korean Renewable Portfolio Standard by comparative analysis of current policies in major countries in respect of design components of a pragmatic industrial policy system, such as political leadership, policy coordination and consultative committee discussion, and policy enforcement with responsibility and transparency. This is to identify problems and to present political suggestions for successful management of the standard based on a fundamental concept of the pragmatism industrial policy. It is predicted that the strategic cooperation between a market and a government leads to industry development as the relationships of two parties are regarded not as antagonistic but as complementary.

Sustainable Smart City Building-energy Management Based on Reinforcement Learning and Sales of ESS Power

  • Dae-Kug Lee;Seok-Ho Yoon;Jae-Hyeok Kwak;Choong-Ho Cho;Dong-Hoon Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1123-1146
    • /
    • 2023
  • In South Korea, there have been many studies on efficient building-energy management using renewable energy facilities in single zero-energy houses or buildings. However, such management was limited due to spatial and economic problems. To realize a smart zero-energy city, studying efficient energy integration for the entire city, not just for a single house or building, is necessary. Therefore, this study was conducted in the eco-friendly energy town of Chungbuk Innovation City. Chungbuk successfully realized energy independence by converging new and renewable energy facilities for the first time in South Korea. This study analyzes energy data collected from public buildings in that town every minute for a year. We propose a smart city building-energy management model based on the results that combine various renewable energy sources with grid power. Supervised learning can determine when it is best to sell surplus electricity, or unsupervised learning can be used if there is a particular pattern or rule for energy use. However, it is more appropriate to use reinforcement learning to maximize rewards in an environment with numerous variables that change every moment. Therefore, we propose a power distribution algorithm based on reinforcement learning that considers the sales of Energy Storage System power from surplus renewable energy. Finally, we confirm through economic analysis that a 10% saving is possible from this efficiency.