• Title/Summary/Keyword: eco-friendly material

Search Result 563, Processing Time 0.031 seconds

Effects of Clothing Material Dyed with Astringent Persimmon Extract upon Exercise-Induced Thermal Strain and Sensory Responses in a Warm Environment

  • Park, Shin-Jung;Shin, Hye-Sun;Chung, Hee-Chung
    • International Journal of Human Ecology
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • This study investigated the effects of persimmon-dyed clothing materials upon thermophysiological responses and subjective comfort sensations during exercise and rest in a warm environment. Six healthy, untrained women participated in two separate testing sessions, with cotton materials dyed with astringent persimmon extract (DC) and undyed cotton materials (UDC). The physical characteristics associated with heat and moisture transfer were improved in DC; also, stiffness, anti-drapery stiffness and crispness in the primary hand values were higher in DC. The experimental protocol consisted of a 10-min rest, 15-min exercise on a treadmill (at ${7km{\cdot}h^{-1}}$) and 25-min recovery at $28{\pm}0.2^{\circ}C$ and $50{\pm}3%\;RH$. The results were as follows: When wearing DC rather than UDC, mean body temperature, heart rate, heat storage and body mass loss were significantly lower during the whole experimental period. Clothing microclimate temperature showed different profiles between the two clothing materials, being lower with DC than UDC during the first half of exercise and the second half of recovery. Clothing microclimate humidity was significantly lower with DC than UDC during the whole experimental period. When wearing UDC, subjects felt significantly warmer and less comfortable during exercise, and sensed greater humidity during exercise and recovery. These results suggest that eco-friendly clothing materials dyed with astringent persimmon extract can reduce exercise-induced heat load and improve subjective sensations when exercising and resting in a warm environment, due to greater heat dissipation from the body to the outside environment compared with undyed clothing materials.

A Basic Study on the Application of Modular Construction - Focused on the Analysis of Case Study - (모듈러 건축의 현황과 활용에 관한 기초연구 - 사례조사 분석을 중심으로 -)

  • Kim, Jae-Young;Lee, Jong-Kuk
    • Journal of the Korean housing association
    • /
    • v.25 no.4
    • /
    • pp.39-46
    • /
    • 2014
  • This research was for the investigation and analysis of the illustration of modular construction application which is different use by each school facility since modular construction related examples are rare in domestic situation, and it has a limitation because of its being basic research material for generating the basic form of modular construction. The research results are as followings. First, in case of school facility from illustration investigation results, module measurement of class modulation is as similar as $3m{\times}10m$, but in resident facility the planning of more flexible plane shape can be possible since modules of 6 cases are free and various, and facade form of various types can be appeared by combination of module unit. Second, as a result of the generated characteristics in compared analysis of representative examples, school facilities were highly indicated for movability and duration reduction areas, and the flexibility, economic efficiency, and environment-friendliness was indicated low relatively. Third, the basic planning types of modular construction can be largely divided into layered type, horizontal (straightway) type, and compound type. The layered type has a short traffic line and facility system and is appropriate for the low-rise form unless separate construction method is used since it is susceptible to load. The horizontal type is advantageous for securing an opening since it has wide extent in light but has a long traffic line and facility system. Finally, the compound type can be possible for planning of various forms but needs the combination of various unit modules and traffic line and facility plan for it can be difficult.

A Study on the Performance and Flow Distribution of Fresh Water Generator with Plate Heat Exchanger

  • Jin, Zhen-Hua;Kim, Pil-Hwan;Lee, Gyeong-Hwan;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.611-617
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present study, discussed main conception of plate heat exchanger and applied in vacuum. PHE and aimed apply in the fresh water generator which installed in ship to desalinate seawater to fresh water use heat from engines. The experiment is proceeded to investigate the heat transfer between cold and hot fluid stream at different flow rate and supply temperature of hot fluid. Generated fresh water as outcome of the system. PHE is an important part of a condensing or evaporating system. One of common assumptions in basic heat exchanger design theory is that fluid is to be distributed uniformly at the inlet of each fluid side and throughout the core. However, in practice, flow mal-distribution is more common and can significantly reduce the heat exchanger performance. The flow and heat transfer are simulated by the k-$\varepsilon$ standard turbulence model. Moreover, the simulation contacted flow maldistribution in a PHE with 6 channels.

  • PDF

Experimental Study of Thermal Conductivity for Glass Wool by Inserted Dissimilar Materials based on Structural Composites (구조 복합재료 기반 이종재료 첨가시의 유리섬유의 열적 성능 평가에 대한 실험적 연구)

  • Bae, Jin-Ho;Oh, Jong-Ho;Byun, Jun-Seok;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.448-455
    • /
    • 2018
  • Glass wool is an eco-friendly materials that is manufactured through a continuous process by processing waste glass. This materials is low cost compared with another materials and has excellent thermal conductivity. For this reason, glass wool is installed as insulation system for LNG carriers and as insulation of building wall as well as various industries. The mechanism of insulation of glass wool is the conduction of the wool itself and convection by space between fibers. Therefore, in order to develop the enhanced thermal conductivity of glass wool is necessary to reduce its own conduction or to insert additional material after manufacturing as well as prevent convection. In this respect, many researchers have been actively studying to decrease thermal conductivity of polyurethane foam using by inserted glass wool or change the chemical component of glass wool. However, many research are aiming reduction of glass wool itself. This study focus on post-processing and inserted different materials; silica-aerogel, kevlar fiber 1mm, 6mm and glass bubble. Experimental results show that the thermal conductivity almost decreases with the addiction of glass bubble and silica aerogel.

A Study of the Sustainable Management Method for Construction phase (건설 공종별 친환경 시공 관리 방안)

  • Park, Ji-Ho;Kim, Tae-Kyoung;Kim, Kyung-Rai
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.961-966
    • /
    • 2007
  • Recently the regulation related the environment is getting more and more strengthened. Needs for sustainable building is growing more and more interested in construction industry. However, most of the research has been conducted is focused on material production or maintaining phases. There are not enough research especially in construction phase. And it still exists a lot of environmental barrier factor which could not be easily quantified in construction fields. It makes problems that contractors make an effort only an adequate regulation and they does not take an interest in reducing efforts of environmental pollution. This research defines factor categories which have to be mainly managed and provides the integrated construction management method for sustainable building to reduce environmental pollution through analysis of environmental barrier factor in each work package and effective adjustment of construction plan.

  • PDF

Fabrication of Cu2SnS3 (CTS) thin Film Solar Cells by Sulfurization of Sputtered Metallic Precursors (스퍼터법을 이용한 메탈 전구체기반의 Cu2SnS3 (CTS) 박막 태양전지 제조 및 특성 평가)

  • Lee, Ju Yeon;Kim, In Young;Minhao, Wu;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.135-139
    • /
    • 2015
  • $Cu_2SnS_3$ (CTS) based thin film solar cells (TFSCs) are of great interest because of its earth abundant, low-toxic and eco-friendly material with high optical absorption coefficient of $10^4cm^{-1}$. In this study, the DC sputtered precursor thin films have been sulfurized using rapid thermal annealing (RTA) system in the graphite box under Ar gas atmosphere for 10 minute. The systematic variation of sulfur powder during annealing process has been carried out and their effects on the structural, morphological and optical properties of CTS thin films have been investigated. The preliminary power conversion efficiency of 1.47% with a short circuit current density of $33.9mA/cm^2$, an open circuit voltage of 159.7 mV, and a fill factor of 27% were obtained for CTS thin film annealed with 0.05g of S powder, although the processing parameter s have not yet been optimized.

Promotion Strategies for Regional Industries in Relation to a New Innovation City in Korea : A Case Study on the Gyeongbuk Innovation City (혁신도시와 연계한 지역산업 육성전략 : 경북 혁신도시를 사례로)

  • Yoon, Chil-Seok
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.5
    • /
    • pp.537-553
    • /
    • 2009
  • This study aims to present promotion strategies for regional industries by exploring the ways to build industrial cluster focusing on regional strategic industries of Gyeongsanbuk-do(province) which are related to innovation city, by taking Gyeongbuk innovation city as an example. This study presented the methods for linking with innovation cities that focus on regional strategic industries, along with the analysis on the linkage between regional industries and public organizations relocated to local regions. As to the methods for the linkage, methods to build clusters based on the characteristics of each industry, such as electronic information device, new material parts, biological oriental medicine, cultural tourism, eco-friendly energy, etc, which are strategic and leading industries of Gyeongsanbuk-do(province), were presented. It was inferred that the industries which have achieved fast growth such as IT and BT industries, required mutually interconnected collaboration through geographical proximity among related subjects, while sectors with mature technologies, such as automative parts, machinery, steel industries, etc, were found to require more extensive infrastructures like the support of transportation and distribution for promoting current clusters.

  • PDF

The Study on the Expressive Characteristics of Complex Surface in Contemporary Architecture - focused on of Herzog & de Meuron's Architecture - (현대건축에서 나타나는 복합적 외피의 표현적 특성에 관한 연구 - 헤르조그 & 드 뮤론의 건축물을 중심으로 -)

  • Kim, Jung-Gon
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.5
    • /
    • pp.3-11
    • /
    • 2012
  • The first visual contact in architecture happens in surface, and it could be significant object as well as the starting point to recognize the essence and perceive the buildings. Architecture surface could not get out of the restriction of structures and materials that support buildings for a long time in the past. Architecture surface in the past should fulfill the structural role to form are appearance of buildings and support buildings at the same time, so it was difficult to get out of logic for material and thickness of walls, arrangements and sizes of windows. However, since the modern age, architecture surface came to be freer according to the development of building technology, and development of technology changes shows tendencies to express role of new design factor as an architectural element emphasized expression and autonomy,s which was escaped from the subordinate relationship that the surface of building must do the structural function. In this study, it would be examined the expressive characteristics of various epidermis that are expressed in architecture of Herzog & de Meuron since the end of 20thcentury focused on comprehended and analyzed results of changes and characteristics of contemporary society. Through this, it would be comprehended the epidermis of architecture that has particular character expressed in modern buildings of Herzog & de Meuron, and it would be composed a certain linkage between this and characteristics of contemporary society and it would be investigated that the establishing process of inner spaces. Identification through case analysis for this would perform a role of catalyst for the new possibility and development of contemporary architecture's surface expression in the future.

  • PDF

Establishment of CO2 Emission Estimation BIM Library for Steel Structures (철골조 건물의 탄소배출량 산정을 위한 BIM 라이브러리 구축)

  • Lee, Jae-Cheol;Jung, Jong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3169-3175
    • /
    • 2014
  • In this paper, we have established the procedures for $CO_2$ emission estimation BIM libraries by using the material takeoff function that BIM tools fundamentally provide, and verified its availability by applying to steel structures. The BIM library set-up procedures were made up of $CO_2$ emission coefficients and parameter extraction, project unit setting, parameter setting, and $CO_2$ emission quantity calculation formula set-up. We used Revit Architecture 2013 as BIM tool, and established the steel members' family libraries as BIM libraries. It is possible to calculate the $CO_2$ emission quantity by following the proposed BIM library set-up procedures, and users have only to input the $CO_2$ emission coefficients and unit weights of steel members being used. We expect that the results contribute to practical use of BIM in field, and vitalizations of the eco-friendly construction.

Comparative Evaluation of Shielding Performance according to the Characteristics of Eco-friendly Shielding Material Tungsten (친환경 차폐재료 텅스텐 특성에 따른 차폐성능 평가)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.129-136
    • /
    • 2021
  • Radiation shields used in medical institutions mainly use lead to manufacture products and fitments. Although lead has excellent processability and economic efficiency, its use is being reduced due to environmental issues when it is disposed of. In addition, when used for a long time, there is a limit to using it as a shielding film, shielding wall, medical device parts, etc. due to cracking and sagging due to gravity. To solve this problem, copper, tin, etc. are used, but tungsten is mostly used because there is a difficulty in the manufacturing process to control the shielding performance. However, it is difficult to compare with other shielding materials because the characteristics according to the type of tungsten are not well presented. Therefore, in this study, a medical radiation shielding sheet was manufactured in the same process using pure tungsten, tungsten carbide, and tungsten oxide, and the particle composition and shielding performance of the sheet cross-section were compared.As a result of comparison, it was found that the shielding performance was excellent in the order of pure tungsten, tungsten carbide, and tungsten oxide.