• Title/Summary/Keyword: eco-friendly concrete

Search Result 192, Processing Time 0.021 seconds

Development of High-Toughness Concrete Using the Mixed Materials for CO2 Reduction (CO2 저감용 혼합재를 사용한 고인성 콘크리트의 개발)

  • Yi, Seong Tae;Heo, Hyung Seok;Noh, Jae Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.89-96
    • /
    • 2013
  • Now-a-days, a manhole adopted since the late 1990s and produced using the polymer concrete has widely used due to the various benefits. While entering the High oil prices times, however, and with the price increase of the petrochemical materials, the cost of manufacture of polymer concrete was elevated and the resulting polymer concrete's weakness is being put on. Accordingly, the development of economic cement concrete manholes, which can replace the outstanding bending strength of manhole made of high-price polymer concrete, has been required. In this study, based on the cement technology of fast hardening armorphous calcium aluminate (ACA), by minimizing the amount of cement using the industrial byproducts, to develop the eco-friendly high-toughness concrete manhole, which can reduce $CO_2$ reduction, was intended. As the results, the cement concrete manhole, which economic, eco-friend, and meeting the performance requirements, was developed.

Shell Powder Coating on the Surface of Concrete by Geopolymer Cement (지오폴리머 시멘트를 이용한 콘크리트 표면의 패각 분말 코팅)

  • Kim, Gab-Joong;Han, Hyun-Geun;Seo, Dong-Seok;Lee, Jong-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Geopolymer materials are attractive as inorganic binders due to their superior mechanical and eco-friendly properties. In the current study, geopolymer-based cement was prepared using aluminosilicate minerals from fly-ash with KOH as an alkaline-activator and $Na_2SiO_3$ as liquid glass. Then, calcium carbonate powder from a clam shell was mixed with the geopolymer and the mixture was coated on a concrete surface to provide points of attachment for environmental organisms to grow on the geopolymers. We investigated the effect of the shell powder grain size on the microstructure and bonding property of the geopolymers. A homogeneous geopolymer layer coated well on the concrete surface via aluminosilicate bonding, but the adhesiveness of the shell powder on the geopolymer cement was dependent on the grain size of the shell powder. Superior adhesive characteristics were shown in the shell powder of large grain size due to the deep penetration into the geopolymer by their large weight. This kind of coating can be applied to the adhesiveness of eco-materials on the surface of seaside or riverside blocks.

A Sensibility Evaluation Study on Interior Space of Exposed Concrete Finish - Focused on the Kim Ok Gil Memorial Hall Restaurant - (노출 콘크리트 마감의 실내 공간 감성평가 연구 - 김옥길 기념관 레스토랑을 중심으로 -)

  • Lee, Jisun;Jung, Hyun-Won;Lee, Hyunsoo
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.5
    • /
    • pp.121-129
    • /
    • 2016
  • With the ingenious properties of unconstrained formativeness and frank expression of materiality the exposed concrete became popular with numerous architectures. The application of the exposed concrete has expanded to indoor environments such as commercial and residential spaces beyond the building exteriors with the uncompromising nature of its materiality. The purpose of this study is to conduct sensibility evaluation of the exposed concrete finish in interior spaces. The sensibility evaluation is conducted through a survey on a set of space models of the exposed concrete finish. The three rendered space models were evaluated by emotional vocabulary of 18 pairs of words. The result were as follows: First, the emotions derived from the exposed concrete finish are 'modern', 'cold', 'simple', 'restrained', 'rough', 'dark', 'new', 'chic', 'familiar' and 'eco-friendly'. Second, three sets of space models with alternative materials on walls and floors in exposed concrete interior space showed clear difference in sensibility. A space with the exposed concrete finish on the floor, the walls and the ceiling showed the results of 'cold', 'dark', 'rational' and 'masculine'. In the exposed concrete finish environment with wood flooring 'comfortable', 'warm', 'bright' senses and with white paint finish on the wall 'bright', 'practical', 'ordinary' and 'restrained' senses were obtained. Third, all three images achieved senses of 'chic', 'modern', 'new', 'pleasant', 'environment friendly' and 'satisfactory'. The modernity and stylish expressions of the exposed concrete finish were kept with the application of different material finishes as well as complementing its cold and rough expressions with warmth and brightness.

Evaluation of Deicing Performance for the Eco-Friendly Deicer (친환경 제설제의 융빙성능 평가)

  • Lee, Kyung-Bae;Lee, Seung-Woo;Yoo, Hyung-Mok;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.15-26
    • /
    • 2008
  • Recently, various damages such as corrosion of rebar, scaling on concrete pavement and environmental deteriorations caused by using the chloride-containing deicer have been reported. To solve these problems, several substitute deicers have been developed by other researchers. However, studies on evaluation of performance for the developed deicers have been limited in the basic laboratory testing. It is necessary to establish the resonable and systematic test procedure for evaluating the deicing performance. In this study, rational and practical test methods were set up through literature review and deicing performance of Eco-Friendly Deicer(EFD), which is a kind of low chloride-containing deicer developed by our research group, was evaluated by the presented test methods. As results of the laboratory tests, initial deicing performance of EFD was similar with that of Pre-Wetted Salt(PWS) which has been used in highway deicing and it was verified by executed field tests in twice that EFD had passable deicing performance compare with PWS.

  • PDF

A Study on Organic Characteristics of Waterfront Design Elements (유기적 특성을 활용한 워터프론트 디자인 요소에 관한 연구)

  • Cho, Yong-Soo;Kim, Ki-Soo;Yee, Jurng-Jae;Doe, Geun-Young
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.105-111
    • /
    • 2004
  • This study is aiming at examining the possibilities to develop eco-friendly waterfront, and discusses characteristics of the organic worldview which has been emerged as new development or eco-friendly paradigm in recent science against the mechanical worldview of modem times. The orientation of waterfront development is characterized as unity, diversity, dynamics and mutuality. In addition, I examined the factors for waterfront design according to the locational, decorativeand visual properties of urban$.$architecture to find out concrete factors of its design. This study suggests the factors for waterfront design making use of organic properties, by examining the orientation for organic development of eco-friendly waterside environment and showing correlation between the factors of specific design, and their examples.

Using cellulose acetate fibers to product eco-friendly concrete; a new strategy to reduce environmental pollution

  • Hamid Reza Ahmadi;Mehdi Rezaie;Taher Khojasteh Zinjanab
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.89-97
    • /
    • 2024
  • Discarded cigarette butts in the environment have caused significant pollution. Therefore, providing solutions to address these environmental issues is of great importance. Concrete is known as one of the most widely used materials around the world. Hence, this study investigates the feasibility of using cigarette butts to product concrete. For this purpose, cellulose acetate fibers obtained from cigarette butt filters were added to silica fume concrete in 10 different volume ratios. Then, the mechanical properties of the concrete samples, including compressive strength, Brazilian tensile strength, and flexural tensile strength, were examined. Based on the results, adding fibers to silica fume concrete improved the mechanical properties of the concrete. Among the 10 mixing designs, adding 0.2% by volume of fibers to silica fume concrete yielded the highest compressive and tensile strengths. In other words, adding 0.2% by volume of fibers resulted in a 16% and 34% increase in compressive strength and a 70% and 38% increase in Brazilian tensile strength at 7 and 28 days, respectively, compared to the state without cellulose acetate fibers. Additionally, the flexural tensile stress capacity increased by 56%. Furthermore, the vertical deformation tolerance in beam specimens increased by 287%, and the energy absorption capacity of the concrete beam also significantly increased. Consequently, along with the significant improvement in the mechanical properties of concrete, this study proposes a new and practicalstrategy to addressthe environmental issues caused by waste cigarette butts.

Resistance to Corrosion of Reinforcement of High Volume Fly Ash Concrete

  • Kwon, S.O.;Bae, S.H.;Lee, H.J.;Lee, K.M.;Jung, S.H.
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.209-213
    • /
    • 2014
  • Due to the increasing of interest about the eco-friendly concrete, it is increased to use concretes containing by-products of industry such as fly ash(FA), ground granulated blast furnace slag(GGBFS), silica fume(SF), and etc. Especially, these are well known for improving the resistances to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance against corrosion of reinforcement of high volume fly ash(HVFA) concrete which is replaced with high volume fly ash for cement volume. For this purpose, the concrete test specimens were made for various strength level and replacement ratio of FA, and then the compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91, and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that the compressive strength of HVFA concrete was decreased with increasing replacement ratio of FA but long-term resistances against reinforcement corrosion and chloride ion penetration of that were increased.

Corrosion Inhibition Properties of Conifer Cone (Pinus resinosa) Extract in Chloride Contaminated Concrete Pore Solutions (염화물에 노출된 콘크리트 기공 내에 솔방울 추출물의 부식 방청 특성)

  • Karthick, Subbiah;Park, TaeJoon;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.63-64
    • /
    • 2021
  • The corrosion inhibition properties of conifer cone (Pinus resinosa) extract were studied in synthetic concrete pore solutions (SCPS) with and without chloride environments by electrochemical methods. The electrochemical impedance spectroscopy (EIS) revealed that the conifer cone (CC) extract showed promising inhibition behavior by diminishing the corrosion rate of steel rebar both solutions i.e. with and without chloride. The extract of conifer cone hinders the corrosion reaction between steel rebar and aggressive ions. Further, it can be verified that the up to 1000mg.L-1 of CC extract can able to reduce the corrosion rate of steel rebar in chloride contaminated concrete.

  • PDF

Development of FRP Recycling Process for Regenerating Applications of Fire Resistance Performance of High Strength Concrete (고강도 콘크리트의 내화성능 용도에 따른 FRP재활용 공정 개발)

  • Lee, Seung Hee;Park, Jong Won;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.207-215
    • /
    • 2015
  • In the last decade, increasing national research fund for recycling the waste FRP (fiber reinforced plastics) ships which has caused environmental problems, improves the technology making concrete-reinforcing fibers out of the waste FRP. Furthermore, the concrete with recycled FRP fiber was tested for the structural performance. Experimental strength tests show that use of recycled FRP powder does not reduce the compressive strength of high strength concrete, and does increase the fire resistance performance of high strength concrete significantly. But, the study in investigating the properties of recycled fiber powder from waste FRP has not been completed because of the absence of the method of separation of mat layer from the waste FRP. This study is to propose a new extracting method of the mat layer from waste FRP, which is the efficient and environment friendly system. and thus it is considered to be the useful recycling method for fire resistance high concrete products or structures.

A Study on the Effect of strength improvement and $CO_2$ reduction by using Eco-concrete in construction site (에코콘크리트 현장 적용에 따른 강도 상승 효과 및 이산화탄소 절감 효과에 관한 연구)

  • Kim, Jeong-Jin;Hwang, Yin-Seong;Lee, Sang-Hyun;We, Joon-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.80-87
    • /
    • 2011
  • Blast furnance slag cement is a cement manufactured with using industrial by-product and it can reduce $CO_2$ by replacing cement when same uit volume concrete is produced. But Blast furnance slag has a short point that early strength of concrete is not good in winter season and it can be used. So, in this study, as long as replacement ratio of Blast furnance slag to original portland cement is under 30%, developed cement, ecoment, improve early strength of concrete and it applied to constructoin site. As a result, it improves 37% in terms of 1-day strength, it reduces 6.7% in terms of $CO_2$ emission when $1m^3$ concrete was produced. The importance and applicability of study wll be expected to increase cosidering global effort and green growth-strategy in country for reducing greenhouse gases.

  • PDF