• Title/Summary/Keyword: eco-energy

Search Result 1,113, Processing Time 0.031 seconds

Deriving Strategic Priorities of Green ICT Policy using AHP and ANP (AHP와 ANP 방법론을 이용한 그린 ICT 정책의 전략적 우선순위 도출 방안)

  • Shim, Yong-Ho;Byun, Gi-Seob;Lee, Bong-Gyou
    • Journal of Internet Computing and Services
    • /
    • v.12 no.1
    • /
    • pp.85-98
    • /
    • 2011
  • Recently, the world faces a global environmental crisis by the increase of energy consumption and global warming. Since the crisis directly affects political, economic, social, and environmental areas, many countries prepare Green ICT policy to overcome it. However, although Green IT policy provides many benefits by solving environmental pollution and increasing energy efficiency, Korean government did not prepare measures by the policy. The purpose of this study is to suggest priorities of political goals for maximizing the efficiency after introducing Green ICT policy in Korea. Major variables are drawn for the analysis, and they are eco-friendliness, technology evolution, economic efficiency, energy efficiency, and stable supply of energy. The variables are suggested based on 'Low Carbon, Green Growth Act', then the survey was conducted to policy expert using AHP(Analytic Hierarchy Process) and ANP(Analytic Network Process) for prioritizing variables. As a result of the AHP, it is derived in the order of eco-friendliness, technology evolution, economic efficiency, energy efficiency, and stable supply of energy. The ANP result shows in the order of technology evolution, energy efficiency, economic efficiency, eco-friendliness, and stable supply of energy. The research is conducted to analyze the priorities of goals for Green IT policy, and the analysis results are possible to use as a practical guideline for establishing associated policies in the future.

Impact Analysis of Air Quality of Mobile Sources using Microscopic Emission and Dispersion Model (미시적 탄소배출량 및 대기확산 모형을 이용한 이동오염원에 의한 대기 질 영향 분석)

  • Yang, Choong Heon;Yang, Inchul;Yoon, Chun Joo;Sung, Jung Gon
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.167-175
    • /
    • 2013
  • PURPOSES : The objective of this study is to investigate the capability of the combined model of traffic simulation, emission and air dispersion models on the impact analysis of air quality of mobile sources such as vehicles. METHODS : The improvement of the quality of life brings about the increasing interest of the public environment. Many endeavors including the travel demand management, the application of the state-of-the-art ITS technologies, the promotion of eco-friendly vehicles have been tried in transportation area to reduce the modal emissions. Especially, it is expected that the increasing number of eco-friendly vehicles in the road network would be able to reduce the pipe-tail emissions tremendously. From this perspective, we have performed a study on the impact analysis of the popularization of the eco-friendly vehicle in the place of the fossil fuel energy powered vehicles on the surrounding air quality using the combined framework of microscopic traffic simulation, emission and air dispersion model. RESULTS : The combined model successfully captured the effect of moving to the eco-friendly vehicles on the air quality, and the results showed that the increasing usage of eco-friendly vehicles can improve the surrounding air quality tremendously and that the air dispersion model plays a crucial role in the investigation of the air quality change around the main corridor. CONCLUSIONS : This study demonstrated the capability of the combined model showing the spatio-tempral change of emission concentration.

A Study on the Natural Energy Effect about the Address No.0 of Eco-friendly Architecture (생태건축 0번지의 자연에너지 효과에 관한 연구)

  • Lee, Si-Woong;Kang, Byung-Ho;Lim, Sang-Hoon;Choi, Seung-Hee
    • KIEAE Journal
    • /
    • v.3 no.3
    • /
    • pp.19-25
    • /
    • 2003
  • The Address No.0 of Eco-friendly Architecture offers unique experience for those who visit the place to envisage the future architecture where nature, human and building exist in harmony. It is open to the general public including the students of elementary and secondary schools. This house has been built to provide opportunities for the general public to experience eco-friendly architecture. It's floor area is 42 pyung($140m^2$) and the overall site has the area of 180 pyung($600m^2$). The following illustrates some of its prominent features : ${\bullet}$ Remodeling of a traditional Korean residence ${\bullet}$ Application of passive solar systems ${\bullet}$ Use of clerestory windows and daylighting systems(washroom and machine room) ${\bullet}$ Operation of solar water heaters with flat plate collectors ${\bullet}$ Construction of Biotop(small ecological world) ${\bullet}$ Water circulation for Biotop by photovoltaic(150W) and wind power(400W) generation ${\bullet}$ Outdoor hot water supplied by all-glass evacuated solar tubes. Through this Address No.0 of Eco-friendly Architeture conclusions are as followings. 1. The array of tubes in collector has the best nice in that the number of tube is nine and the tilt angle is the latitude $+20^{\circ}$. 2. The thermal performance of the all-glass solar vacuum collector was excellent than of the flate-plate solar collector. 3. The adaption of new small wind power systems to buildings were proved to produce a profit if it is considered the expense of environment improvement and the wind speed increasing according to rise of building hight.

Dispersion Property of Al2O3 Nanosol Prepared by Various Dispersion Factors and Silane Modification under Non-Aqueous Solvent (비수계 용매하에서 다양한 분산인자 및 실란 표면개질에 의해 제조된 Al2O3 나노졸의 분산 특성)

  • Na, Ho Seong;Park, Min-Gyeong;Lim, Hyung Mi;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.733-740
    • /
    • 2016
  • $Al_2O_3$ nanosol dispersed under ethanol or N-Methyl-2-pyrrolidone(NMP) was studied and optimized with various dispersion factors and by utilizing the silane modification method. The two kinds of $Al_2O_3$ powders used were prepared by thermal decomposition method from aluminum ammonium sulfate$(AlNH_4(SO_4)_2)$ while controlling the calcination temperature. $Al_2O_3$ sol was prepared under ethanol solvent by using a batch-type bead mill. The dispersion properties of the $Al_2O_3$ sol have a close relationship to the dispersion factors such as the pH, the amount of acid additive(nitric acid, acetic acid), the milling time, and the size and combination of zirconia beads. Especially, $Al_2O_3$ sol added 4 wt% acetic acid was found to maintain the dispersion stability while its solid concentration increased to 15 wt%, this stability maintenance was the result of the electrostatic and steric repulsion of acetic acid molecules adsorbed on the surface of the $Al_2O_3$ particles. In order to observe the dispersion property of $Al_2O_3$ sol under NMP solvent, $Al_2O_3$ sol dispersed under ethanol solvent was modified and solvent-exchanged with N-Phenyl-(3-aminopropyl)trimethoxy silane(APTMS) through a binary solvent system. Characterization of the $Al_2O_3$ powder and the nanosol was observed by XRD, SEM, ICP, FT-IR, TGA, Particles size analysis, etc.

Improvement of Open BIM-based Building Permission Process Using EPI(Energy Performance Index) (에너지성능지표(EPI)를 대상으로 한 개방형BIM기반 건축인허가 개선방향 제시)

  • Kim, Inhan;Kim, Minchan;Choi, Jungsik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.124-135
    • /
    • 2015
  • As many countries have been raising awareness of environmental issues, greater efforts for eco-friendly construction have been made in both governmental and private sectors. However, assessment circumstances for building energy performance and green building standard of legislation are still based on two dimension and handwork. This takes time, cost and labor, and makes assessment inaccurate and inefficient. Therefore, this study suggests methods to improve eco-friendly construction permission process and to automatize open BIM-based assessment of Energy Performance Index (EPI) among several eco-friendly construction certification standards. First, it analyzes the relations between assessment criteria and IFC data, and provides solutions to problems and limitations. Second, it applies the solutions to assessment program in order to automatize open BIM-based assessment for EPI. The eco-friendly construction permission process with these solutions applied will reduce time, cost, and labor by simplifying and automatizing the tasks. Also, the simplified process of design revision will improve not only productivity and efficiency but also accuracy and reliability.

A Study on the Economic Analysis of Introducing Battery-Based Eco Bus: Case Study of Daegu City, South Korea (친환경 버스 도입에 따른 경제성 분석에 관한 연구 (대구광역시 중심으로))

  • Bak, Jae Seok;Kim, Sung-Yul;Kim, Dong-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Renewable energy sources has drawn considerable attention as clean energy sources because of changing public attitudes regarding greenhouse gas and fine dust. Recently, in this respect, the government provides the drivers of electric vehicles with various benefits such as tax reduction, financial incentives and free parking from the public to the private sector. Plug-in electric vehicles are the most common in the private sector. Otherwise, different types of battery-based buses in the public sector are being developed, and there are three main types of charging: plug-in, battery swapping and wireless. Therefore, economic assessment of charging types in each bus route is required in order to facilitate the use of battery-based buses instead of the existing CNG buses. In this paper, net present value(NPV) and B/C ratio of charging types are evaluated in consideration of the bus schedule, the cost of charging station, and the life cycle of battery, etc. per each bus route. In case study, main bus routes in Daegu City are simulated with the proposed evaluation method to validate the eco-bus project.

Evaluation of Environment Imapcts on TiN-ZrCo Composites Hydrogen Seperation by Material Life Cycle Assessment (TiN-ZrCo 복합수소 분리막의 제조와 환경성 평가)

  • KIM, MINGYEOM;AHN, JOONGWOO;HONG, TAEWHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.627-634
    • /
    • 2017
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-ZrCo membrane manufacturting process. Gabi was used as software. The Eco-Indicator 99 methodology was used to evaluate the 11 impact categories and the 10 impact categories using the CML 2001 methodology. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of the characterization and normalization, the environmental impacts of each category of impacts were GWP 100 years with the highest environmental impact of 99.9%.

Design of Nanocomposite Photocatalysts for Solar Hydrogen Production (광화학적 수소제조를 위한 나노복합 광촉매의 설계)

  • Jang, Jum Suk;Kim, Hyun Gyu;Lee, Jae Sung
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.415-423
    • /
    • 2007
  • Photocatalytic water splitting (PWS) is the most promising technology to produce $H_2$ energy directly from renewable water and solar light. In spite of the remarkable progress made in the last decade, there are still many technical challenges remaining particularly in finding new photocatalytic materials with high efficiency and durability. This article discusses the application of nanocomposite materials in search of new photocatalytic materials for solar hydrogen production from water. It has been demonstrated that smart combination and modification of known materials and functions could be fruitful approach for the purpose.

A Review of Microwave-assisted Technology for Biodiesel Production (마이크로파를 이용한 바이오디젤 전환 기술 동향 분석)

  • PARK, JO YONG;JEON, CHEOL-HWAN;KIM, JAE-KON;PARK, CHEON-KYU
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.584-599
    • /
    • 2017
  • Biodiesel is renewable, eco-friendly, clean burning diesel replacement that is consisted of short chain alkyl ester. Biodiesel is derived from the transesterification of vegetables oils or animal fats with alcohol. The process has some technical problems that must be resolved to reduce the high operation cost. Eco-friendly physical technologies by using microwave have successfully improved the transesterification for biodiesel production. This paper attempts to extensively review microwave-assisted technology for biodiesel production. Additionally, different types of catalyst for biodiesel production have been summarized. It is concluded that the microwave-assisted technique improves the reaction rate significantly in comparison with conventional methods. Therefore it can be a suitable method of reducing the reaction time and can also decreases the cost of biodiesel production.

Aspects Of Architectural Design Using BIM Technologies

  • Tikhonova, Oleksandra;Selikhova, Yana;Donenko, Vasyl;Kulik, Mykhailo;Frolov, Denys;Iasechko, Maksym
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.85-92
    • /
    • 2022
  • In this article, we look at the application of BIM (Building Information Modeling) in sustainable infrastructures. In response to global warming, energy shortages, and environmental degradation, people are trying to build eco-friendly, low-carbon cities and promote eco-friendly homes. A "green" building is the entire life cycle of a building that includes maximizing the conservation of resources (energy, water, land, and materials), protecting the environment, reducing pollution, providing people with healthy, comfortable, and efficient use of space, and establishing harmony between nature and architecture. In the field of ecological and sustainable buildings, BIM modeling can be integrated into buildings with analog energy, air flow analysis, and solar building ecosystems. Using BIM technologies, you can reduce the amount of waste and improve the quality of construction. These technologies create "visualization" of digital building models through multidimensional digital design solutions that provide" modeling and analysis "of Scientific Collaboration Platforms for designers, architects, utility engineers, developers, and even end users. Moreover, BIM helps them use three-dimensional digital models in project design and construction and operational management.