• Title/Summary/Keyword: eco-energy

Search Result 1,100, Processing Time 0.027 seconds

A Study on the Improvement and Application Plans of Korean Nuclear Safety Regulations for their Application on Nuclear powered ships (원자력 선박 적용을 위한 국내 원자력 안전규제 개선 및 적용방안에 관한 고찰)

  • Jaehyun Kim;Junseop Jang;Seungmin Kwon;Sinhyeong Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2024
  • As a global effort for eco-friendly, the ship building is making great efforts to develop ships using low-carbon, eco-friendly alternative fuels. Nuclear energy, one of several eco-friendly alternative energy sources, is evaluated as an effective alternative for future ships by minimizing carbon emissions and securing economic feasibility with low power generation cost. However, although appropriate regulatory requirements are necessary for commercialization of nuclear powered ships, there are currently no regulatory requirements for nuclear powered ships in Korea. In this study, accordingly, domestic and international regulatory requirements related to nuclear powered ships were reviewed, matters to be considered in terms of safety when developing domestic marine nuclear reactor regulatory requirements were derived, and a licensing regulatory system for nuclear powered ships was derived.This study is expected to be used as basic reference data when developing regulatory requirements for nuclear powered ships.

The effect of nano-sized starting materials and excess amount of Bi on the dielectric/piezoelectric properties of 0.94[(BixNa0.5)TiO3]-0.06[BaTiO3] lead free piezoelectric ceramics

  • Khansur, Neamul Hayet;Ur, Soon-Chul;Yoon, Man-Soon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • In an approach to acclimate ourselves torecent ecological consciousness trend, a lead-free piezoelectric material, bismuth sodium titanate (abbreviated as BNT) based bismuth sodium barium titanate (abbreviated as BNT-BT), was considered as an environment-friendly alternative for a lead based piezoelectric system. Ceramic specimens of0.94[(BixNa0.5)TiO3]-0.06[BaTiO3] (x = 0.500~0.515) compositions were prepared by a modified mixed oxide method. To increase the chemical homogeneity andre action activity, high energy mechanical milling machine and pre-milled nanosized powder has been used. In this method (BixNa0.5)TiO3 (x=0.500~0.515) andBaTiO3 were prepared separately from pre-milled constituent materials at low calcination temperature and then separately prepared BNTX (X=1, 2, 3 and 4) and BT were mixed by high energy mechanical milling machine. Without further calcination step the mixed powders were pressed into disk shape and sintered at $1110^{\circ}C$. Microstructures, phase structures and electrical properties of the ceramic specimens were systematically investigated. Highly dense ceramic specimens with homogenous grains were prepared in spite of relatively low sintering temperature. Phase structures were not significantly influenced by the excess amount Bi. Large variation on the piezoelectric and dielectric properties was detected at relative high excess Bi amounts. When $x{\leq}0.505$, the specimens exhibit insignificant variation in piezoelectric and dielectric constant though depolarization temperature is found to be decreased. Considerable amount of decrease in piezoelectric and dielectric properties are observed with higher excess of Bi amounts ($x{\geq}0.505$). This research indicates the advantages of high energy mechanical milling and importance of proper maintenance of Bi stoichiometry.

  • PDF

A Comparative Analysis of Energy Performance according to the Ventilation System in Apartment House (공동주택의 환기시스템별 에너지성능 비교 분석)

  • Kim, Gil-Tae;Chun, Chu-Young;Kim, Sun-Dong
    • Land and Housing Review
    • /
    • v.6 no.4
    • /
    • pp.215-220
    • /
    • 2015
  • The purpose of this study was to comparative analyses of energy performance in apartment houses adopted window frame-type natural ventilation, under-floor air distribution ventilation and heat recovery ventilation. As the object of energy simulation, the three type ventilation system with area of $84m^2$ was selected in apartment house. As a result, when the ECO2 simulation was performed, the 1st requirement quantity per annual were $159.9kWh/m^2yr$(CASE1, Natural Ventilation), $179.7kWh/m^2yr$(CASE2, Under-floor Air Distribution Ventilation) and $161.0kWh/m^2yr$(CASE3, Heat Recovery Ventilation).

Cooling and Heating Performance of Ground Source Heat Pump using Effluent Ground Water (유출지하수열원 지열히트펌프의 냉난방성능)

  • Park, Geun-Woo;Nam, Hyun-Kyu;Kang, Byung-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.434-440
    • /
    • 2007
  • The Effluent ground water overflows in deep and broad ground space building. Temperature of effluent ground water is in 12$\sim$18$^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is 800$\sim$1000 ton/day. The heat pump capacity is 5RT each. The heat pump system heating COP was 3.0$\sim$3.3 for the open type and 3.3$\sim$3.8 for the close type system. The heat pump system cooling COP is 3.2$\sim$4.5 for the open type and 3.8$\sim$4.2 for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

Effects of Catalyst Dispersion for Reaction Energy Control on Eco-AZ91 MgH2 (Eco-AZ91 MgH2의 반응열 제어에 미치는 촉매 분산 효과)

  • SOOSUN LEE;SONG SEOK;TAE-WHAN HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.631-640
    • /
    • 2023
  • This study selected Eco-AZ91 MgH2, which shows high enthalpy as a material for this purpose, as the basic material, and analyzed the change in characteristics by synthesizing TiNi as a catalyst to control the thermodynamic behavior of MgH2. In addition, the catalyst dispersion technology using graphene oxide (GO) was studied to improve the high-temperature aggregation phenomenon of Ni catalyst and to secure a source technology that can properly disperse the catalyst. XRD, SEM, and BET analysis were conducted to analyze the metallurgical properties of the material, and TGA and DSC analysis were conducted to analyze the dehydrogenation temperature and calorific value, and the correlation between MgH2, TiNi catalyst, and GO reforming catalyst was analyzed. As a result, the MgH2-5 wt% TiNi at GO composite could lower the dehydrogenation temperature to 478-492 K due to the reduction of the catalyst aggregation phenomenon and the increase in the reaction specific surface area, and an experimental result for the catalyst dispersion technology by GO could be ensured.

A Study on Ocean Cultural Space developed on the Gadeokdo lighthouse 100th anniversary memorial (가덕도등대 100주년 기념관을 활용한 해양문화공간에 관한 연구)

  • Han, Chang-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.494-506
    • /
    • 2010
  • On the crisis of international economy, the government is making an effort to seek economic growing motivation with the method of overcoming economic crisis and 'low carbon green growth'. Furthermore, to promote maritime vessel traffic service related inefficient energy wastage was revealed and eco-friendly alternative energy was accepted because of high price of oil in the beginning of 2008. In this situation, I'm going to discuss the possibility of eco-friendly energy system in maritime vessel traffic service with the way of cutting the budget and expansion of solar power generation system which was promoted to meet governmental 'energy saving plan for high price of oil'.

  • PDF

Estimation of Greenhouse Gas Emissions and Environmental Assessment of Dye Wastewater Treatment Process (염색폐수 처리공정의 온실가스 배출량 산정 및 환경성 평가)

  • Shin, Choon-Hwan;Park, Do-Hyun
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1881-1888
    • /
    • 2014
  • Greenhouse gas (GHG) emissions from dye wastewater treatment processes were estimated by analysing their mass and energy balances, which were then used as baseline information for environmental assessment. The total GHG emissions from dye wastewater treatment plants were divided into direct emissions from the treatment processes and indirect ones from electricity usage. The amounts of $CO_2$, $CH_4$ and $N_2O$ emissions were calculated according to the Intergovernmental Panel on Clime Change (IPCC) guideline for the GHG target management system. For 3 years between 2011 and 2013, direct and indirect emissions were on average 8,742.7 and 7,892.0 Ton.$CO_2eq/year$, respectively, with the former exhibiting 52.6 %. Also, compared to 2012, in 2013, the eco-efficiency indicator by the GHG emissions was found to be more than 1, suggesting that environmental quality was effectively improved.

Life Cycle Assessment for the Business Activities of Green Company -1. Analysis of Process Flow and Basic Unit (녹색기업의 사업활동 전 과정에 대한 환경성 평가 -1. 공정 흐름 및 원단위 분석)

  • Shin, Choon-Hwan;Park, Do-Hyun
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.269-279
    • /
    • 2013
  • In this paper, an environmental assessment was carried out on the whole process of industrial business activities to establish a basic plan for climate change mitigation and energy independency. The whole process was divided into each discharge process in terms of water, air, solid waste, green house gases and refractory organic compounds. The flowcharts and basic unit of process were analysed for three years (2008-2010), being utilized as basic information for the life cycle assessment. It was found that the unit loading for the whole process significantly depends on changes in the operation rate change and highly concentrated wastewater inflow. About 35% of solid waste production was reduced by improving the incineration method with co-combustion in coal boiler, generating about 57% of electricity used for the whole process, and consequently reducing the energy costs. As the eco-efficiency index was found to be more than 1, compared to the previous years, it can be said that improvement in general has taken place.

Technology Development in the Era of Photovoltaic Mass Supply (태양광 대량보급 시대의 기술개발)

  • Cho, Eun-Chel;Song, Jae Chun;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.124-132
    • /
    • 2018
  • The Korean electric power supply plan was prepared by greatly enhancing the environmental and safety with considering the economical efficiency of the electric equipment, the impact on the environment and the public safety. As a result, the fossil energy-based power generation sector is accelerating the paradigm shift to eco-friendly energy such as solar power and wind. Also the solar power industry is expected to grow into a super large-sized industry by converging the energy storage and electric vehicle industry. Generally, a levelized cost of electricity (LCOE) is used to calculate the power generation cost for different generation power generation efficiency, operating cost, and life span. In this paper, we have studied the future research and development direction of photovoltaic technology development for the era of massive utilization of photovoltaic solar power, and have studied the LCOE of major countries including China, USA, Germany, Japan and Korea. Finally we have reviewed USA and Japan research programs to reduce the LCOE.

Analysis of Energy Consumption Efficiency for a Hybrid Electric Vehicle According to the Application of LPG Fuel in WLTC Mode (WLTC 모드에서의 LPG 연료 적용에 따른 하이브리드 자동차 에너지소비효율 분석)

  • Jun Woo, Jeong;Seungchul, Woo;Seokjoo, Kwon;Se-Doo, Oh;Youngho, Seo;Kihyung, Lee
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.195-202
    • /
    • 2022
  • Recently, the global automobile market is rapidly changing from internal combustion engine vehicles to eco-friendly vehicles including electric vehicles. Among eco-friendly vehicles, LPG vehicles are low in fine dust and are suggested as a realistic way to replace diesel vehicles. In addition, it is more economical than gasoline in its class, showing a cost-saving effect. In Korea, the business of converting gasoline into LPG is active. Research is being conducted to apply this to hybrid vehicles. In this study, the difference in energy consumption efficiency was analyzed when LPG fuel was applied by selecting a 2-liter GDI hybrid electric vehicle. The operation of the hybrid system according to various driving characteristics was confirmed by selecting the WLTC mode. As a result, it was confirmed that the BSFC was about 5% lower than that of gasoline fuel when using LPG fuel. This is due to the active operation of the motor while driving. Optimization is required as battery consumption increases from an energy perspective.