• Title/Summary/Keyword: eccentrically braced frames (EBFs)

Search Result 22, Processing Time 0.016 seconds

Seismic performance of eccentrically braced frames with high strength steel combination

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1517-1539
    • /
    • 2015
  • Eccentrically braced frames (EBFs) often use conventional steel with medium yield strength. This system requires structural members with large cross-sections for well seismic behavior, which leads to increased material costs. In eccentrically braced frames with high strength steel combination (HSS-EBFs), links use Q345 steel (specified nominal yield strength 345 MPa), braces use Q345 steel or high strength steel while other structural members use high strength steel (e.g., steel Q460 with the nominal yield strength of 460 MPa or steel Q690 with the nominal yield strength of 690 MPa). For this approach can result in reduced steel consumption and increased economic efficiency. Several finite element models of both HSS-EBFs and EBFs are established in this paper. Nonlinear hysteretic analyses and nonlinear time history analyses are conducted to compare seismic performance and economy of HSS-EBFs versus EBFs. Results indicate that the seismic performance of HSS-EBFs is slightly poorer than that of EBFs under the same design conditions, and HSS-EBFs satisfy seismic design codes and reduce material costs.

Performance-based seismic design of eccentrically braced steel frames using target drift and failure mode

  • Li, Shen;Tian, Jian-bo;Liu, Yun-he
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.443-454
    • /
    • 2017
  • When eccentrically braced steel frames (EBFs) are in the desired failure mode, links yield at each layer and column bases appear plastically hinged. Traditional design methods cannot accurately predict the inelastic behavior of structures owing to the use of capacity-based design theory. This paper proposes the use of performance-based seismic design (PBSD) method for planning eccentrically braced frames. PBSD can predict and control inelastic deformation of structures by target drift and failure mode. In buildings designed via this process, all links dissipate energy in the rare event of an earthquake, while other members remain in elastic state, and as the story drift is uniform along the structure height, weak layers will be avoided. In this condition, eccentrically braced frames may be more easily rehabilitated after the effects of an earthquake. The effectiveness of the proposed method is illustrated through a sample case study of ten-story K-type EBFs and Y- type EBFs buildings, and is validated by pushover analysis and dynamic analysis. The ultimate state of frames designed by the proposed method will fail in the desired failure mode. That is, inelastic deformation of structure mainly occurs in links; each layer of links involved dissipates energy, and weak layers do not exist in the structure. The PBSD method can provide a reference for structural design of eccentrically braced steel frames.

A lateral load pattern based on energy evaluation for eccentrically braced frames

  • Fakhraddini, Ali;Fadaee, Mohammad Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.623-632
    • /
    • 2018
  • Performance-Based Plastic Design (PBPD) method has been recently developed to evaluate the behavior of structures in different performance levels. The PBPD method utilizes a base shear force and a lateral load pattern that are estimated based on energy and yielding mechanism concepts. Using of current lateral force pattern results in weak structural members in upper stories of a structure so that the values of the story drift in these stories are larger than the target drift, particularly in high-rise buildings. Therefore, such distribution requires modifications to overcome this drawback. This paper proposes a modified lateral load pattern for steel Eccentrically Braced Frames (EBFs) based on parametric study. In order to achieve the modified load pattern, a group of 26 EBFs has been analyzed under a set of 20 earthquake ground motions. Additionally, results of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to derive the new load pattern. To prove the efficiency of present study, three EBFs as examples were designed by modified pattern and current PBPD distribution. Inelastic dynamic analyses results showed that the story drifts using modified lateral load pattern were well within the target values in comparison with current pattern in PBPD, particularly where the effect of the height is significant. The modified load pattern reduces the possibility of underdesigning in upper levels and overdesigning in lower levels of the frames.

Effects of near-fault records characteristics on seismic performance of eccentrically braced frames

  • Eskandari, Reyhaneh;Vafaei, Davoud
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.855-870
    • /
    • 2015
  • In this paper the effects of fling-step and forward-directivity on the seismic performance of steel eccentrically braced frames (EBFs) are addressed. Four EBFs with various numbers of stories (4-, 8-, 12- and 15-story) were designed for an area with high seismic hazard. Fourteen near-fault ground motions including seven with forward-directivity and seven with fling-step effects are selected to carry out nonlinear time history (NTH) analyses of the frames. Furthermore, seven more far-field records were selected for comparison. Findings from the study reveal that the median maximum links rotation of the frames subjected to three set of ground motions are in acceptable range and the links completely satisfy the requirement stated in FEMA 356 for LS performance level. The arrival of the velocity pulse in a near-fault record causes few significant plastic deformations, while many reversed inelastic cycles result in low-cycle fatigue damage in far-fault records. Near-fault records in some cases are more destructive and the results of these records are so dispersed, especially the records having fling-step effects.

Seismic behavior of K-type eccentrically braced frames with high strength steel based on PBSD method

  • Li, Shen;Wang, Chao-yu;Li, Xiao-lei;Jian, Zheng;Tian, Jian-bo
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.667-685
    • /
    • 2018
  • In eccentrically braced steel frames (EBFs), the links are fuse members which enter inelastic phase before other structure members and dissipate the seismic energy. Based on the force-based seismic design method, damages and plastic deformations are limited to the links, and the main structure members are required tremendous sizes to ensure elastic with limited or no damage. Force-based seismic design method is very common and is found in most design codes, it is unable to determine the inelastic response of the structure and the damages of the members. Nowadays, methods of seismic design are emphasizing more on performance-based seismic design concept to have a more realistic assessment of the inelastic response of the structure. Links use ordinary steel Q345 (the nominal yielding strength $f_y{\geq}345MPa$) while other members use high strength steel (Q460 $f_y{\geq}460MPa$ or Q690 $f_y{\geq}690MPa$) in eccentrically braced frames with high strength steel combination (HSS-EBFs). The application of high strength steels brings out many advantages, including higher safety ensured by higher strength in elastic state, better economy which results from the smaller member size and structural weight as well as the corresponding welding work, and most importantly, the application of high strength steel in seismic fortification zone, which is helpful to popularize the extensive use of high strength steel. In order to comparison seismic behavior between HSS-EBFs and ordinary EBFs, on the basis of experimental study, four structures with 5, 10, 15 and 20 stories were designed by PBSD method for HSS-EBFs and ordinary EBFs. Nonlinear static and dynamic analysis is applied to all designs. The loading capacity, lateral stiffness, ductility and story drifts and failure mode under rare earthquake of the designs are compared. Analyses results indicated that HSS-EBFs have similar loading capacity with ordinary EBFs while the lateral stiffness and ductility of HSS-EBFs is lower than that of EBFs. HSS-EBFs and ordinary EBFs designed by PBSD method have the similar failure mode and story drift distribution under rare earthquake, the steel weight of HSS-EBFs is 10%-15% lower than ordinary EBFs resulting in good economic efficiency.

Shake table test of Y-shaped eccentrically braced frames fabricated with high-strength steel

  • Lian, Ming;Su, Mingzhou
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.501-513
    • /
    • 2017
  • To investigate the seismic performance of Y-shaped eccentrically braced frames fabricated with high-strength steel (Y-HSS-EBFs), a shake table test of a 1:2 scaled three-story Y-HSS-EBF specimen was performed. The input wave for the shake table test was generated by the ground motions of El Centro, Taft, and Lanzhou waves. The dynamic properties, acceleration, displacement, and strain responses were obtained from the test specimen and compared with previous test results. In addition, a finite element model of the test specimen was established using the SAP2000 software. Results from the numerical analysis were compared with the test specimen results. During the shake table test, the specimen exhibited sufficient overall structural stiffness and safety but suffered some localized damage. The lateral stiffness of the structure degenerated during the high seismic intensity earthquake. The maximum elastic and elastoplastic interstory drift of the test specimen for different peak ground accelerations were 1/872 and 1/71, respectively. During the high seismic intensity earthquake, the links of the test specimen entered the plastic stage to dissipate the earthquake energy, while other structural members remained in the elastic stage. The Y-HSS-EBF is a safe, dual system with reliable seismic performance. The numerical analysis results were in useful agreement with the test results. This finding indicated that the finite element model in SAP2000 provided a very accurate prediction of the Y-HSS-EBF structure's behavior during the seismic loadings.

Progressive collapse analysis of buildings with concentric and eccentric braced frames

  • Larijan, Reza Jalali;Nasserabadi, Heydar Dashti;Aghayan, Iman
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.755-763
    • /
    • 2017
  • In this study, the susceptibility of different symmetric steel buildings with dual frame system to Progressive Collapse (PC) was assessed. Some ten-story dual frame systems with different type of braced frames (concentrically and eccentrically braced frames) were considered. In addition, numbers and locations of braced bays were investigated (two and three braced bays in exterior frames) to quantitatively find out its effect on PC resistance. An Alternate Path Method (APM) with a linear static analysis was carried out based on General Services Administration (GSA 2003) guidelines. Maximum Demand Capacity Ratio (DCR) for the elements (beams and columns) with highest DCRs ($DCR_{moment}$ and $DCR_{shear}$) is given in tables. The results showed that the three braced bays with concentric braced frames especially X-braced and inverted V-braced frame systems had a lower susceptibility and greater resistance to PC. Also, the results represented that the beams were more critical than columns against PC after the removal of column.

Hybrid simulation tests of high-strength steel composite K-eccentrically braced frames with spatial substructure

  • Li, Tengfei;Su, Mingzhou;Guo, Jiangran
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.381-397
    • /
    • 2021
  • Based on the spatial substructure hybrid simulation test (SHST) method, the seismic performance of a high-strength steel composite K-eccentrically braced frame (K-HSS-EBF) structure system is studied. First, on the basis of the existing pseudostatic experiments, a numerical model corresponding to the experimental model was established using OpenSees, which mainly simulated the shear effect of the shear links. A three-story and five-span spatial K-HSS-EBF was taken as the prototype, and SHST was performed with a half-scale SHST model. According to the test results, the validity of the SHST model was verified, and the main seismic performance indexes of the experimental substructure under different seismic waves were studied. The results show that the hybrid simulation results are basically consistent with the numerical simulation results of the global structure. The deformation of each story is mainly concentrated in the web of the shear link owing to shear deformation. The maximum interstory drifts of the model structure during Strength Level Earthquake (SLE) and Maximum Considered Earthquake (MCE) meet the demands of interstory limitations in the Chinese seismic design code of buildings. In conclusion, the seismic response characteristics of the K-HSS-EBFs are successfully simulated using the spatial SHST, which shows that the K-HSS-EBFs have good seismic performance.

An analytical model for shear links in eccentrically braced frames

  • Ashtari, Amir;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.627-645
    • /
    • 2016
  • When an eccentrically braced frame (EBF) is subjected to severe earthquakes, the links experience inelastic deformations while beams outside of the link, braces and columns are designed to remain elastic. To perform reliable inelastic analyses of EBFs sufficient analytical model which can accurately predict the inelastic performance of the links is needed. It is said in the literature that available analytical models for shear links generally predict very well the maximum shear forces and deformations from experiments on shear links, but may underestimate the intermediary values. In this study it is shown that available analytical models do not predict very well the maximum shear forces and deformations too. In this study an analytical model which can accurately predict both maximum and intermediary values of shear force and deformation is proposed. The model parameters are established based on test results from several experiments on shear links. Comparison of available test results with the hysteresis curves obtained using the proposed analytical model established the accuracy of the model. The proposed model is recommended to be used to perform inelastic analyses of EBFs.

Seismic response of EB-frames with inverted Y-scheme: TPMC versus eurocode provisions

  • Montuori, R.;Nastri, E.;Piluso, V.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1191-1214
    • /
    • 2015
  • The Theory of Plastic Mechanism Control (TPMC) has been recently extended to the case of Eccentrically Braced Frames (EBFs) with inverted Y-scheme, i.e., EBFs with vertical links. In this paper a further validation of the design procedure, based on TPMC, is provided by means of Incremental Dynamic Analyses (IDA) pointing out the fulfilment of the design goal, i.e., the development of a pattern of yielding consistent with the collapse mechanism of global type where all the links are yielded and all the beams are yielded at their ends while all the columns and the diagonal braces remain in elastic range with the only exception of the base sections of first storey columns. In particular, a study case is designed according to both TPMC and Eurocode 8 provisions and the corresponding seismic performances are investigated by both push-over and IDA analyses. The results show the different performances obtained in terms of pattern of yielding, maximum interstorey drift, link plastic rotation demand and sharing of the seismic base shear between the moment-resisting part and the bracing part of the structural system. The seismic performance improvement obtained by means of TPMC, compared to Eurocode 8 provisions, is pointed out.