• Title/Summary/Keyword: eccentric mass

Search Result 86, Processing Time 0.025 seconds

On the Free Vibration of Immersed Linearly Tapered Beam with a Tip Mass (첨단 질량을 갖는 선형 원뿔대의 자유진동)

  • Shin, Young-Jae;Sung, Kyung-Yun;Yun, Jong-Hak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.402.1-402
    • /
    • 2002
  • A linearly tapered beam immersed partially in other material is considered and is modelled as a linearly tapered Bernoulli-Euler beam fixed at the bottom with a concentrated mass at the top. Its governing equations is derived and its free vibration analysis is performed for various boundary conditions. And the rotatory inertia of the eccentric lumped tip mass is considered. (omitted)

  • PDF

Control of the Eccentric Building Using a TMD with Torsional Rigidity (비틀림 강성을 가지는 동조질량감쇠기를 이용한 편심건물의 제어)

  • Park, Yong-Koo;Kim, Hyun-Su;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • In this stury, control performance of tuned mass damper (TMD) with torsional rigidity for an eccentric structure showing torsional responses is investigated. To this end, an eccentric structure subjected to earthquake excitation is used to evaluate the control performance of torsional TMD by varying installed location and torsional rigidity of TMD, To reduce computational time required for repetitive time history analysis of an example structure having non-proportional damping system due to TMD, an equivalent analytical model is used in this study. Torsional properties of TMD usually neglected in typical TMD are verified to be effective in reduction of torsional responses of the eccentric structure. In the case of eccentric structures, it has been seen that the center of a plane of a structure may not be optimal location of TMD.

Forced Vibration Testing of a Four-Story Reinforced Concrete Frame Building (철근콘크리트조 4층 골조건물의 강제진동실험)

  • Yu, Eun-Jong;Wallace, John W.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.27-38
    • /
    • 2007
  • A series of forced vibration tests and ambient vibration measurement was conducted on a four-story reinforced concrete building damaged in the 1994 Northridge earthquake. Both low amplitude broadband and moderate amplitude harmonic excitation were applied using a linear shaker and two eccentric mass shakers, respectively, and ambient vibrations were measured before and after each forced vibration test. Accelerations, interstory displacements, and curvature distributions were monitored using accelerometers, LVDTs and concrete strain gauges. Natural frequencies and the associated mode shapes fur the first 7 modes were identified. Fundamental frequencies determined from the eccentric mass shaker tests were 70% to 75% of the values determined using ambient vibration data, and 92% to 93% of the values determined using the linear shaker test data. Larger frequency drops were observed in the NS direction of the building, apparently due to damage that was induced during the Northridge earthquake.

Ratio of Torsion (ROT): An index for assessing the global induced torsion in plan irregular buildings

  • Stathi, Chrysanthi G.;Bakas, Nikolaos P.;Lagaros, Nikos D.;Papadrakakis, Manolis
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.145-171
    • /
    • 2015
  • Due to earthquakes, many structures suffered extensive damages that were attributed to the torsional effect caused by mass, stiffness or strength eccentricity. Due to this type of asymmetry torsional moments are generated that are imposed by means of additional shear forces developed at the vertical resisting structural elements of the buildings. Although the torsional effect on the response of reinforced concrete buildings was the subject of extensive research over the last decades, a quantitative index measuring the amplification of the shear forces developed at the vertical resisting elements due to lateral-torsional coupling valid for both elastic and elastoplastic response states is still missing. In this study a reliable index capable of assessing the torsional effect is proposed. The performance of the proposed index is evaluated and its correlation with structural response quantities like displacements, interstorey drift, base torque, shear forces and upper diaphragm's rotation is presented. Torsionally stiff, mass eccentric single-story and multistory structures, subjected to bidirectional excitation, are considered and nonlinear dynamic analyses are performed using natural records selected for three hazard levels. It was found that the proposed index provides reliable prediction of the magnitude of torsional effect for all test examples considered.

Exact vibration of Timoshenko beam combined with multiple mass spring sub-systems

  • El-Sayed, Tamer A.;Farghaly, Said H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.989-1014
    • /
    • 2016
  • This paper deals with the analysis of the natural frequencies, mode shapes of an axially loaded beam system carrying ends consisting of non-concentrated tip masses and three spring-two mass sub-systems. The influence of system design and sub-system parameters on the combined system characteristics is the major part of this investigation. The effect of material properties, rotary inertia and shear deformation of the beam system is included. The end masses are elastically supported against rotation and translation at an offset point from the point of attachment. Sub-systems are attached to center of gravity eccentric points out of the beam span. The boundary conditions of the ordinary differential equation governing the lateral deflections and slope due to bending of the beam system including developed shear force frequency dependent terms, due to the sub.system suspension, have been formulated. Exact formulae for the modal frequencies and the modal shapes have been derived. Based on these formulae, detailed parametric studies are carried out. The geometrical and mechanical parameters of the system under study have been presented in non-dimensional analysis. The applied mathematical model is presented to cover wide range of mechanical, naval and structural engineering applications.

Mass measuremeant of soilid density standard using weight exchanger (분동교환기를 이용한 고체밀도기준물의 질량측정)

  • 이용재;장경호;오재윤;정상덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1659-1662
    • /
    • 2003
  • The mass measurement of solid density standards using weight exchanger is described. KRISS(Korea Research Institute od Standards and Science) has several solid density standards. Their mass have been measured manually only using a mass comparator(Mettler, 1kg - 0.01mg). However, the uncertaity of the manual mass measurement is up to 300 microgarm much more than 32 microgram of advanced NMIS(National Metrology Institutes) for 1 kg silicon sphere which is primary density standards due to an eccentric error and buoyancy correction error. The new system with a weight exchanger is designed and built to improve the measurement accuracy. It comprises a weight exchager, a mass comparator, air density instruments, and application program for automatic measurement. It is evaluated by measuring several elements in an air tight chamber to verify the performance of it.

  • PDF

The Characteristics of Electrocardiography Findings in Left Ventricular Remodeling Patterns of Hypertensive Patients

  • Choi, Sun Young
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.208-217
    • /
    • 2015
  • The exact diagnosis of left ventricular hypertrophy (LVH) is very important in the treatment of hypertension. The purpose of our study is to determine the relationship between left ventricular remodeling patterns and electrocardiography (ECG) findings in hypertensive patients. We divided 137 patients into four groups according to left ventricular mass index (LVMI) and the relative wall thickness: normal, concentric remodeling, concentric hypertrophy, eccentric hypertrophy. LVH on the ECG was defined by three ECG criteria: Sokolow-Lyon voltage criteria, Cornell voltage criteria and Romhilt-Estes point score. LVH on the echocardiography was defined by LVMI. The prevalence of ECG LVH was increased in concentric hypertrophy and eccentric hypertrophy group. The QRS voltages by Sokolow-Lyon voltage criteria (r = 0.494, P = 0.002) and Cornell voltage criteria (r = 0.628, P < 0.001), and Romhilt-Estes point score (r = 0.689, P < 0.001) were positively correlated with LVMI. Also, the QRS voltages and point scores were significantly increased in the concentric hypertrophy and eccentric hypertrophy group with increased LVMI. The QRS voltage and Romhilt-Estes point scores were positively correlated with LVMI. The QRS voltages and Romhilt-Estes point scores were also increased in the left ventricular remodeling groups with increased LVMI.

Seismic analysis of frame-strap footing-nonlinear soil system to study column forces

  • Garg, Vivek;Hora, Manjeet S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.645-672
    • /
    • 2013
  • The differential settlements and rotations among footings cannot be avoided when the frame-footing-soil system is subjected to seismic/dynamic loading. Also, there may be a situation where column(s) of a building are located near adjoining property line causes eccentric loading on foundation system. The strap beams may be provided to control the rotation of the footings within permissible limits caused due to such eccentric loading. In the present work, the seismic interaction analysis of a three-bay three-storey, space frame-footing-strap beam-soil system is carried out to investigate the interaction behavior using finite element software (ANSYS). The RCC structure and their foundation are assumed to behave in linear manner while the supporting soil mass is treated as nonlinear elastic material. The seismic interaction analyses of space frame-isolated footing-soil and space frame-strap footing-soil systems are carried out to evaluate the forces in the columns. The results indicate that the bending moments of very high magnitude are induced at column bases resting on eccentric footing of frame-isolated footing-soil interaction system. However, use of strap beams controls these moments quite effectively. The soil-structure interaction effect causes significant redistribution of column forces compared to non-interaction analysis. The axial forces in the columns are distributed more uniformly when the interaction effects are considered in the analysis.

Vibration Characteristics of Embedded Piles Carrying a Tip Mass (상단 집중질량을 갖는 근입 말뚝의 진동 특성)

  • Choi, Dong-Chan;Byun, Yo-Seph;Oh, Sang-Jin;Chun, Byung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.405-413
    • /
    • 2010
  • The vibration characteristics of fully and partially embedded piles with flexibly supported end carrying an eccentric tip mass are investigated. The pile model is based on the Bernoulli-Euler theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies and corresponding mode shapes are calculated over a wide range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness, the embedded ratio, the mass ratio, the dimensionless mass moment of inertia, and the tip mass eccentricity.