• 제목/요약/키워드: eccentric behavior

검색결과 161건 처리시간 0.022초

Performance-based plastic design for seismic rehabilitation of high rise frames with eccentric bracing and vertical link

  • Karimi, Rouhina;Rahimi, Sepideh
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.623-633
    • /
    • 2019
  • A large number of available concrete buildings designed only considering gravity load that require seismic rehabilitation because of failure to meet plasticity criteria. Using steel bracings are a common type of seismic rehabilitation. The eccentric bracings with vertical link reduce non-elastic deformation imposed on concrete members as well as elimination of probable buckling problems of bracings. In this study, three concrete frames of 10, 15, and 20 stories designed only for gravity load have been considered for seismic improvement using performance-based plastic design. Afterwards, nonlinear time series analysis was employed to evaluate seismic behavior of the models in two modes including before and after rehabilitation. The results revealed that shear link can yield desirable performance with the least time, cost and number of bracings of concrete frames. Also, it was found that the seismic rehabilitation can reduce maximum relative displacement in the middle stories about 40 to 80 percent. Generally, findings of this study demonstrated that the eccentric bracing with vertical link can be employed as a suitable proxy to achieve better seismic performance for existing high rise concrete frames.

Numerical and experimental study of the nested-eccentric-cylindrical shells damper

  • Reisi, Alireza;Mirdamadi, Hamid Reza;Rahgozar, Mohammad Ali
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.637-648
    • /
    • 2020
  • In this study, a new steel cylindrical shell configuration of the dissipative energy device is proposed to improve lateral ductility and to reduce the damage of the structures against seismic forces. Four nested-eccentric- cylindrical shells are used to constructing this device; therefore, this proposed device is named nested-eccentric-cylindrical shells damper (NECSD). The particular configuration of the nested-eccentric-cylindrical shells is applied to promote the mechanical characteristics, stability, and overall performance of the damper in cyclic loads. Shell-type components are performed as a combination of series and parallel non-linear springs into the in-plan plastic deformation. Numerical analysis with respect to dimensional variables are used to calculate the mechanical characteristics of the NECSD, and full-scale testing is conducted for verifying the numerical results. The parametric study shows the NECSD with thin shells were more flexible, while devices with thick shells were more capacious. The results from numerical and experimental studies indicate that the NECSD has a stable behavior in hysteretic loops with highly ductile performance, and can provide appropriate dissipated energy under cyclic loads.

격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 하중가력패턴에 따른 구조성능평가 (An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method under Loading Patterns)

  • 문홍비;노경민;이영학
    • 한국공간구조학회논문집
    • /
    • 제22권2호
    • /
    • pp.29-37
    • /
    • 2022
  • The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.

Behavior of L-shaped double-skin composite walls under compression and biaxial bending

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.405-418
    • /
    • 2020
  • The application of double-skin composite wall should meet different layout plans. However, most available research focused on the rectangular section with uniform axial compression. In this research, the structural behavior of double-skin composite wall with L section was studied. Due to the unsymmetric geometric characteristics, the considered loading condition combined the axial compression and biaxial bending. Five specimens were designed and tested under eccentric compression. The variables in the test included the width of the web wall, the truss spacing, the thickness of the steel faceplate, and the thickness of the web wall. The test results were discussed in terms of the load-displacement responses, buckling behavior, stiffness, ductility, strength utilization, strain distribution. Two modern codes were employed to predict the interaction between the axial compression and the biaxial bending. The method to calculate the available bending moment along the two directions was proposed. It was found that CECS 159:2004 offers more suitable results than AISC 360.

Partially encased composite columns using fiber reinforced concrete: experimental study

  • Pereira, Margot F.;De Nardin, Silvana;El. Debs, Ana L.H.C.
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.909-927
    • /
    • 2020
  • This paper addresses the results of an experimental study involving 10 partially encased composite columns under concentric and eccentric compressive loads. Parameters such as slenderness ratio, ordinary reinforced concrete and fiber reinforced concrete, load eccentricity and bending axis were investigated. The specimens were tested to investigate the effects of replacing the ordinary reinforced concrete by fiber reinforced concrete on the load capacity and behavior of short and slender composite columns. Various characteristics such as load capacity, axial strains behavior, stiffness, strains on steel and concrete and failure mode are discussed. The main conclusions that may be drawn from all the test results is that the behavior and ultimate load are rather sensitive to the slenderness of the columns and to the eccentricity of loading, specially the bending axis. Experimental results also indicate that replacing the ordinary reinforced concrete by steel fiber reinforced concrete has no considerable effects on the load capacity and behavior of the short and slender columns and the proposed replacement presented very good results.

이중코어를 가진 경사진 형상 구조물의 코어 배치에 따른 역학적 거동 분석 (Analysis of the Static Behavior of Tilted Structure with Dual-Core by Core Location)

  • 김민석;이다혜;강주원
    • 한국공간구조학회논문집
    • /
    • 제23권3호
    • /
    • pp.71-78
    • /
    • 2023
  • Recently, Free-Form and Irregular Shape high-rise buildings are constructed by IT technology development. Tilted shaped high-rise building which is one of Irregular shape high-rise buildings can cause lateral displacement by gravity load and lateral load due to tilted elevation shape. Therefore, it is necessary to review the behavior and structural aspects of the Tilted shape high-rise building by gravity load. In this paper, the dynamic characteristics of a tilted structure with a dual-core were analyzed with the core location as a design variable, and response behavior, vulnerable members, and vulnerable layers to earthquake loads were analyzed. As a result of the analysis, as the location of the core moved in an tilted direction, the eccentric distance and eccentric load decreased, reducing the axial force of the vertical members. However, the location of the core had little effect on the response.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

하중분해법을 사용한 제형 다실박스거더의 뒤틀림 해석 (Distortional Analysis of Multicell Box Girders with a Trapezoidal Cross-Section Using Force-Decomposition Method)

  • 김승준;박남회;강영종
    • 대한토목학회논문집
    • /
    • 제28권6A호
    • /
    • pp.779-788
    • /
    • 2008
  • 본 논문에서는 편재하된 하중이 작용하는 제형 다실 박스거더의 정확한 뒤틀림 거동규명을 위해 3차원 쉘 요소를 사용한 해석법이 제안된다. 쉘 요소를 사용한 독립적인 뒤틀림 해석을 위해서는 정확한 뒤틀림 하중을 산정해야 하는데 본 논문에서는 정역학적인 힘의 평형조건 및 중첩의 원리를 토대로 작용하는 편재하된 하중을 제형 다실 박스거더의 주요한 거동을 유발하는 하중들로 분해하는 하중분해식을 유도하였다. 제안된 하중분해식에 의해 편재하된 하중은 휨과 비틂 그리고 뒤틀림 거동을 유발하는 하중들로 분해되고 이렇게 분해된 하중들을 쉘 요소에 적용하면 각 거동의 독립적인 해석결과를 얻을 수 있다. 이러한 독립적인 해석법은 다실 박스거더의 주요 거동의 역학적 특성을 이해하는 데 매우 유용할 것이고 특히 박스거더의 뒤틀림 거동에 대해 명확히 규명할 수 있는 기반을 마련할 수 있을 것이다. 그리고 현장의 설계자가 복잡한 뒤틀림 상수들을 계산하지 않고도 간단한 쉘요소 모델을 이용하여 독립적인 뒤틀림 해석을 수행할 수 있도록 큰 도움을 줄 수 있을 것이다.

복개 터널구조물에 작용하는 편토압 고려를 위한 수치해석적 연구 (A study on eccentric load acted on cut and cover tunnel by numerical approach)

  • 배규진;정형식;이규필
    • 한국터널지하공간학회 논문집
    • /
    • 제5권3호
    • /
    • pp.227-239
    • /
    • 2003
  • 복개 터널구조물은 친환경적 건설을 위하여 성토체는 일정 구배를 갖는 경사시공을 하게되고, 이로 인하여 복개 터널구조물에는 편토압이 작용하게 된다. 현재 복개 터널구조물의 설계를 위하여 일반적으로 적용되고 있는 구조공학적 해석시 연직토압은 콘크리트 라이닝 상부 성토체를 상재하중으로 고려하여 산정하고, 좌 우측에 작용하는 횡방향 토압은 정지토압 분포를 적용하고 있다. 그러나 이러한 토압분포는 콘크리트 라이닝 좌 우측 측벽부 외측에서 성토체의 경사시공에 의한 편토압의 영향을 고려할 수 없다. 따라서, 본 연구에서는 성토사면에 의한 편토압을 고려한 합리적인 복개 터널구조물 해석 및 설계를 위한 기본연구로써, 지반공학적 모델링 기법을 이용하여 성토사면에 의한 편토압 고려 방안을 제안하였으며, 구조공학적 해석기법을 통하여 제안된 편토압 고려방안의 적용성을 검토하였다.

  • PDF

Experimental behavior of eccentrically loaded RC slender columns strengthened using GFRP wrapping

  • Elwan, S.K.;Omar, M.A.
    • Steel and Composite Structures
    • /
    • 제17권3호
    • /
    • pp.271-285
    • /
    • 2014
  • This paper aims to examine the behavior of slender reinforced concrete columns confined with external glass fiber reinforced polymers (GFRP) sheets under eccentric loads. The experimental work conducted in this paper is an extension to previous work by the author concerning the behavior of eccentrically loaded short columns strengthened with GFRP wrapping. In this study, nine reinforced concrete columns divided into three groups were casted and tested. Three eccentricity ratios corresponding to e/t = 0, 0.10, and 0.50 in one direction of the column were tested in each group. The first group was the control one without confinement with slenderness ratio equal 20. The second group was the same as the first group but fully wrapped with one layer of GFRP laminates. The third group was also fully wrapped with one layer of GFRP laminates but having slenderness ratio equal 15. The experimental results of another two groups from the previous work were used in this study to investigate the difference between short and slender columns. The first was control one with slenderness ratio equal 10 and the second was fully wrapped and having the same slenderness ratio. All specimens were loaded until failure. The ultimate load, axial deformation, strain in steel bars, and failure mechanisms of each specimen were generated and analyzed. The results show that GFRP laminates confining system is less effective with slender columns compared with short one, but this solution is still applied and it can be efficiently utilized especially for slender columns with low eccentric ratio.