• Title/Summary/Keyword: easterly flow

Search Result 23, Processing Time 0.025 seconds

A Numerical Simulation Study of a Heavy Rainfall Event over Daegwallyeong on 31 July 2014 (2014년 7월 31일 대관령에서 발생한 집중호우에 관한 수치모의 연구)

  • Choi, Seung-Bo;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.159-183
    • /
    • 2016
  • On 31 July 2014, there was a localized torrential rainfall ($58.5mm\;hr^{-1}$) caused by a strong convective cell with thunder showers over Daegwallyeong. In the surface synoptic chart, a typhoon was positioned in the East China Sea and the subtropical high was expanded to the Korean peninsula. A WRF (Weather Research and Forecasting) numerical simulation with a resolution of 1 km was performed for a detailed analysis. The simulation result showed a similar pattern in a reflectivity distribution particularly over the Gangwon-do region, compared with the radar reflectivity. According to the results of the WRF simulation, the process and mechanism of the localized heavy rainfall over Daegwallyeong are as follows: (1) a convective instability over the middle part of the Korean peninsula was enhanced due to the low level advection of warm and humid air from the North Pacific high. (2) There was easterly flow from the coast to the mountainous regions around Daegwallyeong, which was generated by the differential heating of the insolation among Daegwallyeong and the Yeongdong coastal plain, and nearby coastal waters. (3) In addition, westerly flow from the western part of Daegwallyeong caused a strong convergence in this region, generating a strong upward motion combined by an orographic effect. (4) This brought about a new convective cell over Daegwallyeong. And this cell was more developed by the outflow from another thunderstorm cell to the south, and finally these two cells were merged to develop as a strong convective cell with thunder showers, leading to the record breaking maximum rainfall per hour ($58.5mm\;hr^{-1}$) in July.

Analysis of the February 2014 East Coast Heavy SnowFall Case Due to Blocking (블로킹에 의한 2014년 2월 동해안 지방 폭설 분석)

  • Bae, Jeong-Ho;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.227-241
    • /
    • 2016
  • This study investigated the cause of the heavy snowfall that occurred in the East Coast of Korea from 6 February to 14 February 2014. The synoptic conditions were analyzed using blocking index, equivalent potential temperature, potential vorticity, maritime temperature difference, temperature advection, and ground convergence. During the case period, a large blocking pattern developed over the Western Pacific causing the flow to be stagnant, and there was a North-South oriented High-to-Low pressure system over the Korean Peninsula because of this arrangement. The case period was divided into three parts based on the synoptic forcing that was responsible for the heavy snowfall; detailed analyses were conducted for the first and last period. In the first period, a heavy snowfall occurred over the entire Korean Peninsula due to strong updrafts from baroclinic instability and a low pressure caused by potential vorticity located at the mid-troposphere. In the lower atmosphere, a North-South oriented High-to-Low pressure system over the Eastern Korea intensified the easterly airflow and created a convergence zone near the ground which strengthened the upslope effect of the Taebaek Mountain range with a cumulative fresh snowfall amount of 41 cm in the East Coast region. In the last period, the cold air nestled in the Maritime Province of Siberia and Manchuria strengthened much more than that in the first half and extended to the East Sea. The temperature difference between the 850 hPa air and the SST was large and convective clouds developed over the sea. The highest cumulative fresh snow amount of 39.7 cm was recorded in the coastal area during this period. During the entire period, vertically oriented equivalent potential temperature showed neutral stability layer that helped the cloud formation and development in the East Coast. The 2014 heavy snowfall case over the East Coast provinces of Korea were due to: 1) stagnation of the system by blocking pattern, 2) the dynamic effect of mid-level potential vorticity of 1.6 PVU, 3) the easterly air flow from North-South oriented High-to-Low pressure system, 4) the existence of vertically oriented neutral stable layer, and 5) the expansion of strong cold air into the East Sea which created a large temperature difference between the air and the ocean.

An Effect of Wind on Circulation in Kamak Bay (가막만의 해수유동에 미치는 바람의 영향)

  • PARK Sung-Eun;CHO Kyu-Dae;HONG Chul-Hoon;KIM Dong-Sun;CHO Kwang-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.674-679
    • /
    • 1999
  • The effect of wind on the circulation in Kamak Bay in the southern sea of Korea was examined using a numerical shallow water model. The experiments were primarily focused on how the effect of wind influence the tidal residual current. According to wind directions, the residual currents were changed; the westerly wind created a strong anti-clockwise eddy in the northwestern area of the bay where the flow field is usually very weak; the easterly wind strengthened the flow field in the central area of the bay; the patterns of flow fields to the north and south winds were almost the same as one without the wind, although the flow field became slightly stronger, The model flirty reproduced features in the observed current field at Pyongsa.

  • PDF

Analysis for Onset of Changma Using Ieodo Ocean Research Station Data (이어도 기상 관측 자료를 활용한 장마 시작일 분석)

  • Oh, Hyoeun;Ha, Kyung-Ja;Shim, Jae-Seol
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.189-196
    • /
    • 2014
  • The definition of onset date of Changma is revisited in this study using a quality controlled Ieodo ocean research station data. The Ieodo station has great importance in terms of its southwest location from Korean Peninsula and, hence, makes it possible to predict Changma period in advance with less impact of continents. The onset date of Changma using the Ieodo station data is defined by the time that meridional wind direction changes and maintains from northerly to southerly, and then the zonal wind changes from easterly to westerly after first June. This definition comes from a recognition that the establishment and movement of the western North Pacific subtropical high (WNPSH) cause Changma through southwesterly flow. The onset data of Changma has been determined by large-scale dynamic-thermodynamic characteristics or various meteorological station data. However, even the definition based on circulation data at the Ieodo station has a potential for the improved prediction skill of the onset date of Changma. The differences between before and after Changma, defined as Ieodo station data, are also found in synoptic chart. The convective instability and conspicuous circulations, corresponding low-level southwesterly flow related to WNPSH and strong upper-level zonal wind, are represented during Changma.

Characteristics of Atmospheric Circulation in Sokcho Coast (속초연안에서 대기순환의 특성)

  • Choi Hyo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.41-51
    • /
    • 2005
  • Using three-dimensional non-hydrostatical numerical model with one way double nesting technique, atmo­spheric circulation in the mountainous coastal region in summer was investigated from August 13 through 15, 1995. During the day, synoptic westerly wind blows over Mt. Mishrung in the west of a coastal city, Sokcho toward the East Sea, while simultaneously, easterly upslope wind combined with both valley wind from plain (coast) toward mountain and sea-breeze from sea toward inland coast blows toward the top of the mountain. Two different directional wind systems confront each other in the mid of eastern slope of the mountain and the upslope wind goes up to the height over 2 km, becoming an easterly return flow in the upper level over the sea and making sea-breeze front with two kinds of sea-breeze circulations of a small one in the coast and a large one in the open sea. Convective boundary layer is developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west and a thickness of thermal internal boundary layer from the coast along the eastern slope of the mountain is only confined to less than 200 m. On the other hand, after sunset, no prohibition of upslope wind generated during the day and downward wind combined with mountain wind from mountain towardplain and land-breeze from land toward under nocturnal radiative cooling of the ground surfaces should intensify westerly downslope wind, resulting in the formation of wind storm. As the wind storm moving down along the eastern slop causes the development of internal gravity waves with hydraulic jump motion in the coast, bounding up toward the upper level of the coastal sea, atmospheric circulation with both onshore and offshore winds like sea-breeze circulation forms in the coastal sea within 70 km until midnight and after that, westerly wind prevails in the coast and open seas.

Evolution of Wind Storm over Coastal Complex Terrain (연안복합지형에서 바람폭풍의 진화)

  • Choi, Hyo;Seo, Jang-Won;Nam, Jae-Cheol
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.865-880
    • /
    • 2002
  • As prevailing synoptic scale westerly wind blowing over high steep Mt. Taegulyang in the west of Kangnung coastal city toward the Sea of Japan became downslope wind and easterly upslope wind combined with both valley wind and sea breeze(valley-sea breeze) also blew from the sea toward the top of the mountain, two different kinds of wind regimes confronted each other in the mid of eastern slope of the mountain and further downward motion of downlsope wind along the eastern slope of the mountain should be prohibited by the upslope wind. Then, the upslope wind away from the eastern slope of the mountain went up to 1700m height over the ground, becoming an easterly return flow in the upper level of the sea. Two kinds of circulations were detected with a small one in the coastal sea and a large one from the coast toward the open sea. Convective boundary layer was developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west, while a thickness of thermal internal boundary layer(TIBL) form the coast along the eastern slope of the mountain was only confined to less than 200m. After sunset, under no prohibition of upslope wind, westerly downslope wind blew from the top of the mountain toward the coastal basin and the downslope wind should be intensified by both mountain wind and land breeze(mountain-land breeze) induced by nighttime radiative cooling of the ground surfaces, resulting in the formation of downslope wind storm. The wind storm caused the development of internal gravity waves with hydraulic jump motion bounding up toward the upper level of the sea in the coastal plain and relatively moderate wind on the sea.

An Analysis of Low-level Stability in the Heavy Snowfall Event Observed in the Yeongdong Region (영동지역 대설 사례의 대기 하층 안정도 분석)

  • Lee, Jin-Hwa;Eun, Seung-Hee;Kim, Byung-Gon;Han, Sang-Ok
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.209-219
    • /
    • 2012
  • Extreme heavy snowfall episodes have been investigated in case of accumulated snowfall amount larger than 50 cm during the past ten years, in order to understand the association of low-level stability with heavy snowfall in the Yeongdong region. In general, the selected 4 events have similar synoptic setting such as the Siberian High extended to East Sea along with the Low passing by the southern Korean Peninsula, eventually inducing easterly in the Yeongdong region. Specifically moist-adiabatically neutral layer has been observed during the heavy snowfall period, which was easily identified using vertical profiles of equivalent potential temperature observed at Sokcho, whereas convective unstable layer has been formed over the East sea due to relatively warm sea surface temperature (SST) about $8{\sim}10^{\circ}C$ and lower temperature around 1~2 km above the surface, obtained from RDAPS. Difference of equivalent potential temperature between 850 hPa and surface as well as difference between air and sea temperatures altogether gradually increased before the snowfall period. Instability-induced moisture supply to the atmosphere from the East sea, being cooled and saturated by the upper cold surge, would make low-level ice cloud, and eventually move inland by the easterly flow. Heavy snowfall will be enhanced in association with low-level convergence by surface friction and upslope wind against Taebaek mountains. This study emphasizes the importance of low level stability in the Yeongdong region using the radiosonde sounding and RDAPS data, which should quantitatively be examined through numerical model as well as heat and moisture supply from the ocean.

Analysis on the Observation Environment of Surface Wind Using GIS data (GIS 자료를 활용한 지상 바람 관측환경 분석)

  • Kwon, A-Rum;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.65-75
    • /
    • 2015
  • In this study, the observation environment of surface wind at an automatic weather station (AWS 288) located at Naei-dong, Mirang-si was analyzed using a computational fluid dynamics (CFD) model and geographic information system (GIS). The 16 cases with different inflow directions were considered before and after construction of an apartment complex around the AWS 288. For three inflow directions (south-south-westerly, south-south-easterly, and north-north-westerly), flow characteristics around the AWS 288 were investigated in detail, focusing on the changes in wind speed and direction at the AWS location. There was marked difference in wind speed between before and after construction of the apartment complex in the south-south-westerly case. In the south-south-easterly and north-north-westerly cases which were frequently observed at the AWS 288, the construction of the apartment complex had no marked influence on the observation of surface wind.

Modification of Sea Water Temperature by Wind Driven Current in the Mountainous Coastal Sea

  • Choi, Hyo;Kim, Jin-Yun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.177-184
    • /
    • 2003
  • Numerical simulation on marine wind and sea surface elevation was carried out using both three-dimensional hydrostatic and non-hydrostatic models and a simple oceanic model from 0900 LST, August 13 to 0900 LST, August 15, 1995. As daytime easterly meso-scale sea-breeze from the eastern sea penetrates Kangnung city in the center part as basin and goes up along the slope of Mt. Taegullyang in the west, it confronts synoptic-scale westerly wind blowing over the top of the mountain at the mid of the eastern slope and then the resultant wind produces an upper level westerly return flow toward the East Sea. In a narrow band of weak surface wind within 10km of the coastal sea, wind stress is generally small, less than l${\times}$10E-2 Pa and it reaches 2 ${\times}$ 10E-2 Pa to the 35 km. Positive wind stress curl of 15 $\times$ 10E-5Pa $m^{-1}$ still exists in the same band and corresponds to the ascent of 70 em from the sea level. This is due to the generation of northerly wind driven current with a speed of 11 m $S^{-1}$ along the coast under the influence of south-easterly wind and makes an intrusion of warm waters from the southern sea into the northern coast, such as the East Korea Warm Current. On the other hand, even if nighttime downslope windstorm of 14m/s associated with both mountain wind and land-breeze produces the development of internal gravity waves with a hydraulic jump motion of air near the coastal inland surface, the surface wind in the coastal sea is relatively moderate south-westerly wind, resulting in moderate wind stress. Negative wind stress curl in the coast causes the subsidence of the sea surface of 15 em along the coast and south-westerly coastal surface wind drives alongshore south-easterly wind driven current, opposite to the daytime one. Then, it causes the intrusion of cold waters like the North Korea Cold Current in the northern coastal sea into the narrow band of the southern coastal sea. However, the band of positive wind stress curl at the distance of 30km away from the coast toward further offshore area can also cause the uprising of sea waters and the intrusion of warm waters from the southern sea toward the northern sea (northerly wind driven current), resulting in a counter-clockwise wind driven current. These clockwise and counter-clockwise currents much induce the formation of low clouds containing fog and drizzle in the coastal region.

  • PDF

Flow Analysis indoor Coal Storage Shed due to Wind Velocity and Wind Direction of Ambient Air (외기의 풍속 및 풍향에 따른 옥내저탄장 내부 유동 해석)

  • Kim, Tae-Kwon;Cho, Mok-Lyang;Bae, Young-Wan;Kim, Ji-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.538-545
    • /
    • 2020
  • The outdoor coal storage sheds of thermal power plants are being converted to indoor coal storage sheds worldwide because of the environmental pollution problems in the surrounding areas. On the other hand, indoor coal storage sheds are causing problems, such as indoor coal scattering and harmful gas generation. In this study, the ventilation method of indoor coal storage sheds was analyzed in terms of the internal flow characteristics and ventilation according to the outside wind velocity and direction. CFD analysis was performed based on the actual flow measurement information inside the indoor coal storage sheds. A comparison of the wind speed of 6 m/s and 2 m/s when the outside wind direction was easterly showed that the stream velocity to the monitor louver was faster and the recirculation area was clearer at 6 m/s than at 2 m/s. In addition, the trend of a westerly wind was similar to that of the easterly wind. The ventilation rate according to the wind speed was 13.1 times and 4.4 times for a wind speed of 6 m/s and 2 m/s, respectively. If the wind speed is 2 m/s, the situation does not meet the required number of ventilations per hour in a general plant, and needs to be improved.