• Title/Summary/Keyword: earthquake warning

Search Result 58, Processing Time 0.024 seconds

A Study on Estimating Earthquake Magnitudes Based on the Observed S-Wave Seismograms at the Near-Source Region (근거리 지진관측자료의 S파를 이용한 지진규모 평가 연구)

  • Yun, Kwan-Hee;Choi, Shin-Kyu;Lee, Kang-Ryel
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.121-128
    • /
    • 2024
  • There are growing concerns that the recently implemented Earthquake Early Warning service is overestimating the rapidly provided earthquake magnitudes (M). As a result, the predicted damages unnecessarily activate earthquake protection systems for critical facilities and lifeline infrastructures that are far away. This study is conducted to improve the estimation accuracy of M by incorporating the observed S-wave seismograms in the near source region after removing the site effects of the seismograms in real time by filtering in the time domain. The ensemble of horizontal S-wave spectra from at least five seismograms without site effects is calculated and normalized to a hypocentric target distance (21.54 km) by using the distance attenuation model of Q(f)=348f0.52 and a cross-over distance of 50 km. The natural logarithmic mean of the S-wave ensemble spectra is then fitted to Brune's source spectrum to obtain the best estimates for M and stress drop (SD) with the fitting weight of 1/standard deviation. The proposed methodology was tested on the 18 recent inland earthquakes in South Korea, and the condition of at least five records for the near-source region is sufficiently fulfilled at an epicentral distance of 30 km. The natural logarithmic standard deviation of the observed S-wave spectra of the ensemble was calculated to be 0.53 using records near the source for 1~10 Hz, compared to 0.42 using whole records. The result shows that the root-mean-square error of M and ln(SD) is approximately 0.17 and 0.6, respectively. This accuracy can provide a confidence interval of 0.4~2.3 of Peak Ground Acceleration values in the distant range.

Fast and Accurate Analyzing Technology for Earthquakes in the Seas around the Korean Peninsula Using Waveform Format Conversion and Composition (파형 변환.합성을 이용해서 한반도 주변 해역 지진 분석을 위한 신속 정확한 분석 기술)

  • Kim So-Gu;Pak Sang-Pyo
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.171-178
    • /
    • 2006
  • The seismological observation of Korea began in 1905, and has been run with continuous earthquake network of observation, expanding to the advanced country, but still has some problems in accuracy and speed for report. There are many problems to announce the early warning system for earthquakes and tsunami in the East Sea because most events in the East Sea occur outside the seismic network. Therefore multi-waveform data conversion and composition from the surrounding countries such as Korea, Japan and Far East Russia are requested in order to improve more accurate determination of the earthquake parameters. We used FESNET(Far East Seismic Network) technology to analyze the May 29 and June 1 Earthquakes, and the March 20, 2005 Fukuoka Earthquake in this research, using the data sets of KMA, Japan(JMA/MIED) and IRIS stations. It was found out that use of FESNET resulted in more better outputs than that of a single network, either KMA or JMA stations.

Preliminary study on the Earthquake Alert System (지진네트워크를 이용한 지진경보시스템 예비연구)

  • 이희일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.213-217
    • /
    • 2000
  • It is essential to establish an earthquake alert system real-time seismographic data acquisition and data transmission by dedicated communications,. Up to now approximately 60 earthquake stations are installed in Korea and being operated by KMA. KEPRI,. KINS and KIGAM and its number will be increased in time. The earthquake data recorded in half of these stations are transmitted to data center and analysed in quasi real-time. Therefore if these real-time seismographic stations be connected to each organization by dedicated lines and we will develop an algorithm which we can calculate the magnitude and epicenter within 25-30 seconds after an earthquake occurred it will be possible to develop an Earthquake Alert System giving several tens of seconds warning in advance.

  • PDF

Earthquake-related Data Selection using Event Packets (이벤트 패킷을 이용한 지진관련 데이터의 추출)

  • Lim, In-Seub;Jung, Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.59-68
    • /
    • 2008
  • In this paper, we propose a method for selecting meaningful event packets from which can receive before anything else from seismograph according to allotted priority and estimate epicenter using selected packets. Event packets which received from each station will be evaluated with their onset time, signal period and SNR by statistical method and will be selected packets related with real earthquake's P-wave. And estimated epicenters using by 'Application of epicenter estimation using first P arrivals'. With local earthquakes occurred in 2007 were announced by KMA, collected event packets on earthquake happened date and selected p-wave related packets and estimated epicenter. After result of experiment, if an earthquake occurred within seismic networks, can estimate epicenter with small misfits just after event packets arrived from above 4 stations. Considering average distance of each station, in case of using all stations' data include other organization, can estimate and alert rapidly. It show this method is useful when construct a local earthquake early warning system later.

  • PDF

Development of Dam Earthquake Monioring System and Application of Earthquake Records for Dam Safety Management against Earthquake (지진대비 댐안전관리를 위한 지진감시시스템 구축 및 계측기록 활용)

  • Ha, Ik-Soo;Lee, Jong-Wook;Cho, Sung-Eun;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1389-1396
    • /
    • 2008
  • The recent Sichuan earthquake(2008) in China and Iwate-Miyazaki earthquake(2008) in Japan give Korea peninsula warning that it is no more safety zone against damage by earthquake events. So, rapid and appropriate countermeasures for dam operation and management against earthquake are needed. In Korea earthquake design standard(MOCT, 1997) has been revised after Kobe earthquake. Installation of seismometer and monitoring of earthquake for special class dams is requlated in dam aseismic design standard(MOCT, 2001). Accelerometer installation project for existing dams has been carrying out by K-water to establish an earthquake network for dam safety. Real-time dam earthquake monitoring network has also been developed to detect an earthquake efficiently and to warn to dam administrators as soon as possible. In this study, dam real-time earthquake monitoring system developed by K-water was introduced and applicability of real earthquake record measured by this system to dam safety management was illustrated.

  • PDF

A Study on Indoor Alert Broadcasting System for Mongolian Earthquake Disaster Warning System (몽골 지진조기경보시스템을 위한 옥내경보방송 방안 연구)

  • Lee, Seung-Hyung;Ahn, Byung-Dug;Lee, Won-Suk;Choi, Jong-In
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.1-4
    • /
    • 2017
  • 본 논문에서는 2014년도 몽골에 구축된 지진조기경보시스템(EDWS : Earthquake Disaster Warning System)을 효율적으로 운영하기 위한 방안에 대하여 연구하였으며 우리나라 기업에서 구축 운영 중인 몽골 지진조기경보시스템은 VHF망과 위성망을 이용하여 재난 상황 발생 시 즉각적으로 옥외 경보방송과 TV, 라디오를 이용하여 상황을 전파 할 수 있도록 구성되어 있다. 그러나 울란바토르 시내 중심부에는 많은 관공서와 사무실, 극장, 쇼핑몰, 아파트 등이 밀집되어 있어 실내에서 재난경보 방송을 청취하기가 쉽지 않아 재난경보 사각 지대 및 음영지역이 존재하는 상태이다. 본 연구를 통해 정부 유관기관 및 인구밀집지역 건물 내부에 효과적인 옥내경보방송 방법을 제시하여 각종 재난 재해시 경보방송의 활용성을 높이고 몽골 정부기관과 대형 공공 건물에 의무적으로 옥내경보방송 장치 설치를 유도하여 보다 효율적인 경보방송 시스템을 제시하고자 한다.

  • PDF

Prototype Implementation of a Personalized Warning Notification System based on Geosocial Information (지오소셜 정보 기반 개인 맞춤형 경보 시스템 원형 구현)

  • Tiep, Vu Duc;Quyet, Nguyen Van;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.332-334
    • /
    • 2015
  • Nowadays a disaster event such as a building on fire, an earthquake or typhoon could occur any time, and any where. In such event, a warning notification system is a vital tool to send warning notifications to at-risk people in advance and provide them useful information to escape the dangerous area. Though some systems have been proposed such as emergency alert system using android, SMS or P2P overlay network, these works mainly focus on a reliable message distribution methods. In this work, we introduce a full prototype implementation of a personalized warning notification system based on geosocial information, which generates a personalized warning message for each user and delivers the messages through email or an android application. The system consists of four main modules: a web interface, database, a knowledge-based message generator, and message distributor. An android application is also created for user to receive warning messages on their smart phone. The prototype has been demonstrated successfully with a building-on-fire scenario.

Development of a Targeted Recommendation Model for Earthquake Risk Prevention in the Whole Disaster Chain

  • Su, Xiaohui;Ming, Keyu;Zhang, Xiaodong;Liu, Junming;Lei, Da
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.14-27
    • /
    • 2021
  • Strong earthquakes have caused substantial losses in recent years, and earthquake risk prevention has aroused a significant amount of attention. Earthquake risk prevention products can help improve the self and mutual-rescue abilities of people, and can create convenient conditions for earthquake relief and reconstruction work. At present, it is difficult for earthquake risk prevention information systems to meet the information requirements of multiple scenarios, as they are highly specialized. Aiming at mitigating this shortcoming, this study investigates and analyzes four user roles (government users, public users, social force users, insurance market users), and summarizes their requirements for earthquake risk prevention products in the whole disaster chain, which comprises three scenarios (pre-quake preparedness, in-quake warning, and post-quake relief). A targeted recommendation rule base is then constructed based on the case analysis method. Considering the user's location, the earthquake magnitude, and the time that has passed since the earthquake occurred, a targeted recommendation model is built. Finally, an Android APP is implemented to realize the developed model. The APP can recommend multi-form earthquake risk prevention products to users according to their requirements under the three scenarios. Taking the 2019 Lushan earthquake as an example, the APP exhibits that the model can transfer real-time information to everyone to reduce the damage caused by an earthquake.

Real-time seismic structural response prediction system based on support vector machine

  • Lin, Kuang Yi;Lin, Tzu Kang;Lin, Yo
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.163-170
    • /
    • 2020
  • Floor acceleration plays a major role in the seismic design of nonstructural components and equipment supported by structures. Large floor acceleration may cause structural damage to or even collapse of buildings. For precision instruments in high-tech factories, even small floor accelerations can cause considerable damage in this study. Six P-wave parameters, namely the peak measurement of acceleration, peak measurement of velocity, peak measurement of displacement, effective predominant period, integral of squared velocity, and cumulative absolute velocity, were estimated from the first 3 s of a vertical ground acceleration time history. Subsequently, a new predictive algorithm was developed, which utilizes the aforementioned parameters with the floor height and fundamental period of the structure as the new inputs of a support vector regression model. Representative earthquakes, which were recorded by the Structure Strong Earthquake Monitoring System of the Central Weather Bureau in Taiwan from 1992 to 2016, were used to construct the support vector regression model for predicting the peak floor acceleration (PFA) of each floor. The results indicated that the accuracy of the predicted PFA, which was defined as a PFA within a one-level difference from the measured PFA on Taiwan's seismic intensity scale, was 96.96%. The proposed system can be integrated into the existing earthquake early warning system to provide complete protection to life and the economy.

Damage Caused by Tsunami and Warning System (지진해일의 피해와 예보체계)

  • Kang, Young-Seung
    • Journal of the Korean Professional Engineers Association
    • /
    • v.38 no.1
    • /
    • pp.59-63
    • /
    • 2005
  • A Tsunami was generated by the magnitude 9.0 earthquake which occurred near Indonesia. An energetic Tsunami will display vertical water displacement of the order of ten meters and lateral scales of the order of tens of kilometers. The Tsunami destroyed many coastal villages in Asia. So, there are many victims in southeastern part Asia by Tsunami. Therefore, the construction of Tsunami prediction and warning system is needed for minimize the damage by seismic sea waves.

  • PDF