• Title/Summary/Keyword: earthquake vibration

Search Result 712, Processing Time 0.019 seconds

Shaking Table Test to Verify the Seismic Performance of Nuclear Electric Components (원자력 전기기기 부품의 내진성능 확인을 위한 진동대 실험)

  • Chang, Sung Jin;Jeon, Bub Gyu;Park, Dong Uk;Kim, Sung Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.141-147
    • /
    • 2024
  • Earthquakes of magnitude 3.0 or greater occur in Korea about 10 times on average yearly, and the number of earthquakes occurring in Korea is increasing. As many earthquakes have recently occurred, interest in the safety of nuclear power plants has increased. Nuclear power plants are equipped with many cabinet-type control facilities to regulate safety facilities, and function maintenance is required during an earthquake. The seismic performance of the cabinet is divided into structural and functional performances. Structural performance can be secured during the design procedure. Functional performance depends on the vibration performance of the component. Therefore, it is necessary to confirm the seismic performance of the components. Generally, seismic performance is confirmed through seismic simulation tests. When checking seismic performance through seismic simulation tests, it is difficult to determine the effect of frequency and maximum acceleration on an element. In this paper, shaking table tests were performed using various frequencies and various maximum accelerations. The seismic performance characteristics of the functions of electrical equipment components were confirmed through tests.

Proposing rhombus shape non-linear connection by seismic approach on the "pendulum column" isolator considering buckling effect in its piers

  • Abdallah Azizi;Majid Barghian
    • Structural Engineering and Mechanics
    • /
    • v.92 no.3
    • /
    • pp.257-266
    • /
    • 2024
  • An Earthquake is a natural phenomenon that causes the destruction of structures. For many years, various methods have been proposed to control this phenomenon. In modern times, a new method called active and passive control has been developed. Isolator systems are among the methods to control the structure's response. Instead of increasing the strength and capacity of the structure, these systems react to earthquakes. In this paper, a nonlinear rhombus shaped spring combined with the pendulum column isolation system was introduced that caused the piers to be flexible. The behavior of this isolator with flexible bases has been investigated. The studied system mathematical equations were derived, solved with MATLAB software, and compared with ABAQUS results. Later on, the isolator system was investigated under different earthquakes, and FFT analysis was performed on the results. The results demonstrate that this mechanism is suitable as an isolator because it reduces earthquake effects. It was observed that in the flexible piers form, the period was increased. The flexible piers have an effective role - in the response of the system-by reducing the system's stiffness considerably. Among the different damping ratios, those with ratios greater than 10% showed better results.

Improved Distribution of Lateral Seismic Forces for Evaluation of Inelastic Seismic Response of RC Irregular Building Structures (비정형 RC 건축구조물의 비선형 지진응답 평가를 위한 개선된 횡하중 분배 방법)

  • 최원호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.322-329
    • /
    • 2000
  • Current seismic design codes for building structures are based on the methods which can provide enough capacity to satisfy objected performance level and exactly evaluate the seismic performance of buildings. Pushover analysis of fast becoming an accepted method for the seismic evaluation of building structures. The popularity of this approximate, nonlinear static analysis method is due to its conceptual simplicity and ability to graphically describe a capacity and demand of structure. However, some of the shortcomings of the pushover analysis, especially for longer period and irregular buildings, is the inability of method to identify failure mechanisms due to effects of higher modes. In this paper proposed lateral load pattern which includes the contribution of higher modes of vibration for irregular building structure and compared to seismic response obtained by time history.

  • PDF

Design of Lead-Shear Damper for Stay Cables (사장교 케이블 진동감소용 납-전단 댐퍼의 설계)

  • 안상섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.490-495
    • /
    • 2000
  • This paper presents the dynamic behavior of stay cable with Lead-Shear damper( LSD) near the support. This kind of research about the dynamic behavior of LSD is essential to design LSD in order to mitigate the ambient vibration of stay cable. The hysteresis curve of LSD was assumed to be perfect elasto-plastic behavior based on the real hysteretic behavior of such lead-based dampers. Mechanical model of LSD was equivalent Kelvin model and sag effect of stay cable was considered. Yielding force (also referred as size) of LSD was selected as a design parameter. Effects of tension of stay cable and installation point of LSD were studied. It was found that optimal size of LSD exists for each case of stay cable.

  • PDF

Cost Effectiveness Evaluation of Seismic Isolated Bridges in Low and Moderate Seismic Region (중약진 지역에서의 지진격리교량의 비용효율성 평가)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.440-447
    • /
    • 2000
  • In order to evaluate the cost effectiveness of seismic isolation for bridges in low and moderate seismic region, a method of calculation minimum life-cycle cost of seismic-isolated bridges under specific acceleration level and soil condition is developed. Input ground motion is modeled as spectral density function compatible with response spectrum for combination of acceleration coefficient and site coefficient. Failure probability is calculated by spectrum analysis based on random vibration theories to simplify repetitive calculations in the minimization procedure. Ductility of piers and its effects on cost effectiveness are considered by stochastic linearization method. Cost function and cost effectiveness index are defined by taking into consideration the characteristics of seismic isolated bridges. Limit states for calculation of failure probability are defined on superstructure, isolator and pier, respectively. The results of example design and analysis show that seismic isolation is more cost-effective in low and moderate seismic region than in high seismic region.

  • PDF

Vibration Control for Building Structures using Active Mass Driver (II) : Shaking -Table Test (능동제어장치를 이용한 건물의 진동제어 (II) : 진동대 실험)

  • 민경원;김두훈;이성경;황재승
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.95-102
    • /
    • 1998
  • 본 연구의 목적은 능동질량 장치를 이용하여 지진하중을 받는 건물모델의 응답을 제어하는 것으로서 실험에 사용된 능동질량 장치는 교류형 서보 모터에 의해 관성력이 건물모델의 응답에 반작용하여 제어를 하게 되는 원리를 이용한 것이다 소형 진동대에 의한 외부하중 묘사 신호처리와 제어력 발생을 위한 장비들이 구축된 실험 모델로써 능동 질량 추진기가 1층 전단형 건물모델 상부에 설치된 해석 모델을 실현하였으며 제어력 산정을 위한 선형 2차 제어 알고리듬은 LabVIEW 프로그램을 사용해서 구현하였다. 건물의 응답과 제어력을 고려해서 제어성능을 검증하였으며 능동 질량 장치를 설치함으러써 공진하중과 지진하중에 대한 건물의 응답이 감소하고 또한 속도피드백 알고리듬이 그 외의 피드백 알고리듬 보다 제어력이 가장 적게 소용되면서 건물의 응답을 감소시키는 것을 실험적으로 파악하였다.

  • PDF

Earthquake Response Analysis of A Large Scale Seismic Test Structure (대형지진시험구조물의 지진응답해석)

  • Yun, Chung-Band;Park, Kyoung-Lae;Kim, Jae-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.107-113
    • /
    • 1995
  • This paper presents the earthquake response analysis results on the Large-Scale Seismic Test (LSST)structure which was built at Hualien in Taiwan. The seismic analysis is carried out using a computer code KIESSI, which has been developed based on the three-dimensional axisymmetric finite element method incorporating infinite elements for the far field soil region. The soil and structural properties obtained from the post-correlation study of the forced vibration tests (FVT) are utilized to predict seismic responses. The ground accelerations recorded at a site 56.5 m from the test structure are used as control motions. It has been found that the predicted responses are reasonably compared with the observed responses.

  • PDF

3-D analysis of sloshing motion in a fluid container with nonlinear boundary conditions (비선형 경계조건을 고려한 내부 유체의 3차원 자유수면 유동해석)

  • 김문겸;임윤묵;조경환;박종헌;이성민
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.177-184
    • /
    • 2002
  • Large amplitude sloshing can occur in contained fluid region due to the seismic ground motion. Also, The pressure by large amplitude sloshing damages the connections between the wall and roof of a fluid container and causes outflow of contained fluid. Therefore, to predict the dynamic behavior accurately, three dimensional analysis with the nonlinear boundary condition must be performed. In this study, the numerical solution procedure is developed using the boundary element method with the Lagrangian particle approach. In order to demonstrate the accuracy and validity of the developed method, the fluid motion for a free oscillation with small amplitude and a forced vibration are analyzed. And the numerical results are compared with the linear theory results and the previous studies with the nonlinear boundary condition.

  • PDF

Seismic Response Analysis of Soil-Pile-Structure Interaction System considering the Underground Cavity (지중공동을 고려한 지반-말뚝-구조물 상호작용계의 지진응답해석)

  • 김민규;임윤묵;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.117-124
    • /
    • 2002
  • The major purpose of this study is to determine the dynamic behavior of soil-pile-structure interaction system considering the underground cavity. For the analysis, a numerical method fur ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. For the verification of dynamic analysis in the frequency domain, both forced vibration analysis and free-field response analysis are performed. The behavior of soil non-linearity is considered using the equivalent linear approximation method. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis considering the underground cavity in 2D problem.

  • PDF

Efficient Dynamic Analysis of Tall Buildings with Viscoelastic Dampers (점탄성 감쇠기가 설치된 고층건물의 효율적인 동적 해석)

  • 김상태;홍성일;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.11-19
    • /
    • 1997
  • In this paper, an efficient dynamic analysis method of a building structure with viscoelastic dampers is proposed. Viscoelastic dampers are used for the purpose of controlling vibration of buildings. The matrix condensation technlque based on the rigid diaphragm assumption is not readily applicable for building structures with viscoelastic dampers. An improved procedure for damping matrix condensation is employed in the proposed method to increase the efficiency of analysis. Efficiency and accuracy of the proposed method are verified through analysis of an example structure.

  • PDF