• Title/Summary/Keyword: earthquake vibration

Search Result 712, Processing Time 0.026 seconds

Development of energy based Neuro-Wavelet algorithm to suppress structural vibration

  • Bigdeli, Yasser;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.237-246
    • /
    • 2017
  • In the present paper a new Neuro-Wavelet control algorithm is proposed based on a cost function to actively control the vibrations of structures under earthquake loads. A wavelet neural network (WNN) was developed to train the control algorithm. This algorithm is designed to control multi-degree-of-freedom (MDOF) structures which consider the geometric and material non-linearity, structural irregularity, and the incident direction of an earthquake load. The training process of the algorithm was performed by using the El-Centro 1940 earthquake record. A numerical model of a three dimensional (3D) three story building was used to accredit the control algorithm under three different seismic loads. Displacement responses and hysteretic behavior of the structure before and after the application of the controller showed that the proposed strategy can be applied effectively to suppress the structural vibrations.

Robust Control of Earthquake Responses considering Higher Mode Uncertainty (고차 모우드 불확실성을 고려한 지진응답의 강인제어)

  • 고현무;박관순;박원석;조익선
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.99-108
    • /
    • 2000
  • 구조물의 능동제어 시스템에서 제어기 설계에 사용되는 구조계의 모델과 실구조계의 차이는 시스템의 성능저하 및 불안정성을 유발할 수 있다 이연구에서는 무시된 고차모우드와 같이 주파수영역에서 표현되는 비구조적 불확실성에 대하여 시스템의 안정성을 보장하도록 강인성을 가지는 LQG/LTR제어이론을 사용하여 구조물의 지진응답제어에 효과적으로 사용할 수 있는 제어기 설계방법을 제시한다 특히 고층건물이나 교탑과 같은 구조물의 지진응답 제어에 적용할 수 있도록 각층의 절대 가속도를 측정변수로 층간상대변위를 제어변수로 설정하여 최적제어기를 구성한다 El Centro 지진압력을 받는 6자유도 전단빌딩모델에 대하여 제어기를 설계하거 수치모사를 수행하여 제시한 제어기가 안정도-강인성을 가지고 지진응답제어에 효과적임을 보인다.

  • PDF

Optimal input cross-power spectra in shake table testing of asymmetric structures

  • Ammanagi, S.;Manohar, C.S.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1115-1132
    • /
    • 2015
  • The study considers earthquake shake table testing of bending-torsion coupled structures under multi-component stationary random earthquake excitations. An experimental procedure to arrive at the optimal excitation cross-power spectral density (psd) functions which maximize/minimize the steady state variance of a chosen response variable is proposed. These optimal functions are shown to be derivable in terms of a set of system frequency response functions which could be measured experimentally without necessitating an idealized mathematical model to be postulated for the structure under study. The relationship between these optimized cross-psd functions to the most favourable/least favourable angle of incidence of seismic waves on the structure is noted. The optimal functions are also shown to be system dependent, mathematically the sharpest, and correspond to neither fully correlated motions nor independent motions. The proposed experimental procedure is demonstrated through shake table studies on two laboratory scale building frame models.

Seismic Damage Assessment on Structures using Measured Acceleration (측정가속도를 이용한 구조물의 지진손상평가)

  • 오성호;신수봉
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.216-223
    • /
    • 2003
  • A time-domain system identification (SI) method is developed for seismic damage assessment on structures. SI algorithms for complete measurements with respect to degrees-of-freedom are proposed. To take account of nonlinear dynamic response, an equation error in the incremental dynamic governing equation is defined for complete measurement between measured and computed acceleration. Variations of stiffness and damping parameters during earthquake vibration are chased by utilizing a constrained nonlinear optimization tool available in MATLAB. A simulation study has been carried out to identify damage event and to assess damage severity by using measured acceleration time history. Mass properties are assumed as known a priori. The effects of measurement noise on the identification are also investigated.

  • PDF

Mitigation of the seismic response of a cable-stayed bridge with soil-structure-interaction effect using tuned mass dampers

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.699-712
    • /
    • 2019
  • A cable-stayed bridge (CSB) is one of the most complicated structures, especially when subjected to earthquakes and taking into consideration the effect of soil-structure-interaction (SSI). A CSB of a 500 m mid-span was modeled by the SAP2000 software and was subjected to four different earthquakes. To mitigate the harmful effect of the vibration generated from each earthquake, four mitigation schemes were used and compared with the non-mitigation model to determine the effectiveness of each scheme, when applying on the SSI or fixed CSB models. For earthquake mitigation, tuned mass damper (TMD) systems and spring dampers with different placements were used to help reduce the seismic response of the CBS model. The pylons, the mid-span of the deck and the pylon-deck connections are the best TMDs and spring dampers placements to achieve an effective reduction of the earthquake response on such bridges.

MOGA-Based Structural Design Method for Diagrid Structural Control System Subjected to Wind and Earthquake Loads

  • Kim, Hyun-Su;Kang, Joo-Won
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1598-1606
    • /
    • 2018
  • An integrated optimal structural design method for a diagrid structure and control device was developed. A multi-objective genetic algorithm was used and a 60-story diagrid building structure was developed as an example structure. Artificial wind and earthquake loads were generated to assess the wind-induced and seismic responses. A smart tuned mass damper (TMD) was used as a structural control system and an MR (magnetorheological) damper was employed to develop a smart TMD (STMD). The multi-objective genetic algorithm used five objectives including a reduction of the dynamic responses, additional stiffness and damping, mass of STMD, capacity of the MR damper for the integrated optimization of a diagrid structure and a STMD. From the proposed method, integrated optimal designs for the diagrid structure and STMD were obtained. The numerical simulation also showed that the STMD provided good control performance for reducing the wind-induced and seismic responses of a tall diagrid building structure.

The design of the robust hybrid controller for the construction using an active dynamic vibration absorber

  • Lee, Sang-Kyu;Lee, Jin-Ho;Hwang, I-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.75.4-75
    • /
    • 2001
  • This paper designs the robust hybrid controller for the multi degree-of-freedom system having uncertainty caused by modeling error and disturbances. The controlled plant is the construction which has an active dynamic vibration absorber on the top and is excited by the El Centre earthquake at the base. The active controller designed by the LQR(Linear Quadratic Regulator) and H-infinity control theory. The robustness of the hybrid H$\infty$ controller is compared with that of the hybrid LQ controller from computer simulation.

  • PDF

Performance of Rotational Friction Dampers Under earthquake excitation (회전형 Friction Damper의 거동 특성 연구)

  • 배춘희;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.810-813
    • /
    • 2004
  • A study on the dynamic response of single-storey steel frames equipped with a rotational friction damper is presented. Extensive testing was carried out for assessing the friction pad material, damper unit performance and foaled model frame response to lateral harmonics excitation. Numerical simulations based on non-linear time history analysis were used to evaluate the seismic behaviour of steel frames with rotational frictional damper. It Is demonstrated that using discrete friction dampers of proper parameters to link steel frame can reduce dynamic response significantly.

  • PDF

Response Of Steel Frame Structures With Added Elastic Dampers (탄성 댐퍼가 추가된 대형철골 구조물의 응답특성)

  • 배춘희;조철환;양경현;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.808-812
    • /
    • 2002
  • The feasibility of using elastic dampers to mitigate earthquake-induced structural response is studied in this paper. The properties of elastic dampers are briefly described. A procedure for evaulating the elastic damping effect when added to a structure is proposed in which the damping effect of elastic dampers is incorporated into modal damping ratios through an energy approach. Computer simulation of the damped response of a multi-storey steel frame structure shows significant reduction in floor displacement levels.

  • PDF

Experiment and Analysis for the Horizontal Vibration Control of Access Floor on Reinforced Concrete Structures (철근 콘크리트 구조물의 Access Floor 수평진동 제어를 위한 실험 및 해석)

  • 변근주;김문겸;송하원;이호범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.31-39
    • /
    • 1997
  • This paper is on the vibration control of access floor on the frames of reinforced structure. In this study, the horizontal anti-vibration system using precise spring damper was developed and modeling and vibration analysis of the RC structure was performed for the control of horizontal vibration coused by machinery and worker's moving. Experiment was done in three cases, no damper at the RC structures, dampers connecting pedestal to pedestal and pedestal to the structure, for the investigation of the effect of the system on disigned RC structure. For each experiment, the occeleration responses on slab and access floor after giving impact wave and external vibration were measured. It was shown that the magnitude of resonance response of the system with dampers are smaller than without damper and the resonance peak also partly moved to low-frequency range. Furthermore. It was shown that the acceleration components of the system with domoers decreased greatly in high-frequency range and the system was very much effective especially for external vibration. In order to verify the anti-vibration effect of the developed system, the vibration analysis was also done for the system by using the finite element modelling. The analysis results was in good agreement with experimental results. Thus, It is concluded that this study is useful for the design of precise anti-vibration system and micro-vibration control of concrete structures.

  • PDF