• Title/Summary/Keyword: earthquake resisting structures

Search Result 166, Processing Time 0.025 seconds

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

The effect of mass eccentricity on the torsional response of building structures

  • Georgoussis, George K.;Mamou, Anna
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.671-682
    • /
    • 2018
  • The effect of earthquake induced torsion, due to mass eccentricities, is investigated with the objective of providing practical design guidelines for minimizing the torsional response of building structures. Current code provisions recommend performing three dimensional static or dynamic analyses, which involve shifting the centers of the floor masses from their nominal positions to what is called an accidental eccentricity. This procedure however may significantly increase the design cost of multistory buildings, due to the numerous possible spatial combinations of mass eccentricities and it is doubtful whether such a cost would be justifiable. This paper addresses this issue on a theoretical basis and investigates the torsional response of asymmetric multistory buildings in relation to their behavior when all floor masses lie on the same vertical line. This approach provides an insight on the overall seismic response of buildings and reveals how the torsional response of a structure is influenced by an arbitrary spatial combination of mass eccentricities. It also provides practical guidelines of how a structural configuration may be designed to sustain minor torsion, which is the main objective of any practicing engineer. A parametric study is presented on 9-story common building types having a mixed-type lateral load resisting system (frames, walls, coupled wall bents) and representative heightwise variations of accidental eccentricities.

Ductile cracking simulation procedure for welded joints under monotonic tension

  • Jia, Liang-Jiu;Ikai, Toyoki;Kang, Lan;Ge, Hanbin;Kato, Tomoya
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • A large number of welded steel moment-resisting framed (SMRF) structures failed due to brittle fracture induced by ductile fracture at beam-to-column connections during 1994 Northridge earthquake and 1995 Kobe (Hyogoken-Nanbu) earthquake. Extensive research efforts have been devoted to clarifying the mechanism of the observed failures and corresponding countermeasures to ensure more ductile design of welded SMRF structures, while limited research on the failure analysis of the ductile cracking was conducted due to lack of computational capacity and proper theoretical models. As the first step to solve this complicated problem, this paper aims to establish a straightforward procedure to simulate ductile cracking of welded joints under monotonic tension. There are two difficulties in achieving the aim of this study, including measurement of true stress-true strain data and ductile fracture parameters of different subzones in a welded joint, such as weld deposit, heat affected zone and the boundary between the two. Butt joints are employed in this study for their simple configuration. Both experimental and numerical studies on two types of butt joints are conducted. The validity of the proposed procedure is proved by comparison between the experimental and numerical results.

Bayesian approach for the accuracy evaluating of the seismic demand estimation of SMRF

  • Ayoub Mehri Dehno;Hasan Aghabarati;Mehdi Mahdavi Adeli
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.117-130
    • /
    • 2024
  • Probabilistic model of seismic demand is the main tool used for seismic demand estimation, which is a fundamental component of the new performance-based design method. This model seeks to mathematically relate the seismic demand parameter and the ground motion intensity measure. This study is intended to use Bayesian analysis to evaluate the accuracy of the seismic demand estimation of Steel moment resisting frames (SMRFs) through a completely Bayesian method in statistical calculations. In this study, two types of intensity measures (earthquake intensity-related indices such as magnitude and distance and intensity indices related to ground motion and spectral response including peak ground acceleration (PGA) and spectral acceleration (SA)) have been used to form the models. In addition, an extensive database consisting of sixty accelerograms was used for time-series analysis, and the target structures included five SMRFs of three, six, nine, twelve and fifteen stories. The results of this study showed that for low-rise frames, first mode spectral acceleration index is sufficient to accurately estimate demand. However, for high-rise frames, two parameters should be used to increase the accuracy. In addition, adding the product of the square of earthquake magnitude multiplied by distance to the model can significantly increase the accuracy of seismic demand estimation.

Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS): an engineering solution for practical aseismic isolation with advanced materials

  • Narjabadifam, Peyman;Noori, Mohammad;Cardone, Donatello;Eradat, Rasa;Kiani, Mehrdad
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.89-102
    • /
    • 2020
  • Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS) is proposed as an engineering solution to practically exploit the well-accepted advantages of both sliding isolation and SMA-based recentering. Self-centering capability in SSS is provided by austenitic SMA cables (or wire ropes), recently attracting a lot of interest and attention in earthquake engineering and seismic isolation. The cables are arranged in various novel and conventional configurations to make SSS versatile for aseismic design and retrofit of structures. All the configurations are detailed with thorough technical drawings. It is shown that SSS is applicable without the need for Isolation Units (IUs). IUs, at the same time, are devised for industrialized applications. The proof-of-concept study is carried out through the examination of mechanical behavior in all the alternative configurations. Force-displacement relations are determined. Isolation capabilities are predicted based on the decreases in seismic demands, estimated by the increases in effective periods and equivalent damping ratios. Restoring forces normalized relative to resisting forces are assessed as the criteria for self-centering capabilities. Lengths of SMA cables required in each configuration are calculated to assess the cost and practicality. Practical implementation is realized by setting up a small-scale IU. The effectiveness of SSS under seismic actions is evaluated using an innovative computer model and compared to those of well-known Isolation Systems (ISs) protecting a reference building. Comparisons show that SSS seems to be an effective IS and suitable for earthquake protection of both structural and non-structural elements. Further research aimed at additional validation of the system are outlined.

Energy Demand in Steel Structures with Buckling Restrained Braces (좌굴이 방지된 가새가 설치된 철골조 건물의 에너지 요구량)

  • 최현훈;김진구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.29-37
    • /
    • 2003
  • In this study, a story-wise distribution of hysteretic energy in steel moment resisting framse(MRF), buckling restrained braced frames(BRBF), and hinge-connected framed structures with buckling restrained braces(HBRBF) subjected to various earthquake ground excitations was investigated. Sixty earthquake ground motions recorded in different soil conditions were used to compute the energy demand in model structure. According to analysis results, the hysteretic energy in MRF and BRBF turned out to be the maximum at the base and monotonically diminishes with increasing height. However the story-wise distribution of hysteretic energy in HBRBF was relatively uniform over the height of the structure. In this case damage is not concentrated in a single story, and therefore it is considered to be more desirable than other systems. The story-wise energy distribution pattern under three different soil types turned out to be approximately the same.

Behavioral Performance Evaluation of the Moment-Resisting Frame Models Equipped with Seismic Damage Mitigation Systems (지진피해 저감 시스템을 설치한 모멘트 프레임의 거동성능 평가)

  • Joe, Yang Hee;Son, Hong Min;Hu, Jong Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.311-322
    • /
    • 2017
  • In this study, the seismic performance of concrete-steel composite moment frame structures equipped with seismic retrofitting systems such as seismic reinforcement, base isolators, and bracing members, which are typical earthquake damage mitigation systems, is evaluated through nonlinear dynamic analyses. A total of five frame models were designed and each frame model was developed for numerical analyses. A total of 80 ground acceleration data were used to perform the nonlinear dynamic analysis to measure ground shear force and roof displacement, and to evaluate the behavioral performance of each frame model by measuring inter-story drift ratios. The analysis results indicate that the retrofitting device of the base isolator make a significant contribution to generating relatively larger absolute displacement than other devices due to flexibility provided to interface between ground and column base. However, the occurrence of the inter-story drift ratio, which is a relative displacement that can detect the damage of the structure, is relatively small compared with other models. On the other hand, the seismic reinforced frame model enhanced with the steel plate at the lower part of the column was found to be the least efficient.

Use of Shakedown Analysis Technique in Optimum Seismic Design of Moment-Resisting Steel Structures (모멘트-저항 철골구조물의 최적내진설계에 있어서의 Shakedown 해석기법의 응용)

  • 이한선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.51-58
    • /
    • 1989
  • Through a series of analyses of specific structures it is shown that incremental collapse may be the critical design criterion and that shakedown analysis can be used as a design tool. Using shakedown analysis technique, a nonlinear structural optimization program has been developed. This incorporates : (ⅰ) design constraints on elastic stresses and deflections ; (ⅱ) constraints for the prevention of incremental collapse and soft story failure ; and (ⅲ) the constraint on the fundamental period of structure. A five-step design procedure is proposed by using this program to obtain the optimum design that satisfies all the requirements of comprehensive earthquake-resistant design.

  • PDF

RESPONSE CONTROL OF 3D IRREGULAR BUILDINGS UNDER SEISMIC EXCITATIONS USING TLCD (TLCD를 이용한 지진하중을 받는 3차원 비정형 건축구조물의 응답제어)

  • 김홍진;김형섭;안상경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.66-71
    • /
    • 2003
  • The semi-active TLCD system is investigated for control of responses of 3D irregular buildings under seismic excitations. The TLCD system is a special type of TMD system providing a performance similar to a TMD system but offers a number of practical advantages over the traditional TMD system. The equations of motion for the combined building and TLCD system are derived for multistory building structures with rigid floors and plan and elevation irregularities. Simulation results for control of two multistory moment-resisting space structures with vertical and plan irregularities show clearly that the semi-active TLCD control system reduces the responses of 3D irregular buildings subjected to earthquake ground motions efficiently.

  • PDF

Use of Shakedown Analysis Technique in Optimum Seismic Design of Moment-Resisting Steel Structures (모멘트 - 저항 철골구조물의 최적내진설계에 있어서의 Shakedown 해석기법의 응용)

  • 이한선
    • Computational Structural Engineering
    • /
    • v.2 no.4
    • /
    • pp.99-109
    • /
    • 1989
  • Through a series of analyses of specific structures it is shown that incremental collapse may be the critical design criterion and that shakedown analysis can be used as a design tool. Using shakedown analysis technique, a nonlinear structural optimization program has been developed. This incorporates: (i) design constraints on elastic stresses and deflections: (ii) constraints for the prevention of incremental collapse and soft story failure: and (iii) the constraint on the fundamental period of structure. A five-step design procedure is proposed by using the program to obtain the optimum design that satisfies all the requirements of comprehensive earthquake-resistant design.

  • PDF